1,796 research outputs found

    Acceleration of Computational Geometry Algorithms for High Performance Computing Based Geo-Spatial Big Data Analysis

    Get PDF
    Geo-Spatial computing and data analysis is the branch of computer science that deals with real world location-based data. Computational geometry algorithms are algorithms that process geometry/shapes and is one of the pillars of geo-spatial computing. Real world map and location-based data can be huge in size and the data structures used to process them extremely big leading to huge computational costs. Furthermore, Geo-Spatial datasets are growing on all V’s (Volume, Variety, Value, etc.) and are becoming larger and more complex to process in-turn demanding more computational resources. High Performance Computing is a way to breakdown the problem in ways that it can run in parallel on big computers with massive processing power and hence reduce the computing time delivering the same results but much faster.This dissertation explores different techniques to accelerate the processing of computational geometry algorithms and geo-spatial computing like using Many-core Graphics Processing Units (GPU), Multi-core Central Processing Units (CPU), Multi-node setup with Message Passing Interface (MPI), Cache optimizations, Memory and Communication optimizations, load balancing, Algorithmic Modifications, Directive based parallelization with OpenMP or OpenACC and Vectorization with compiler intrinsic (AVX). This dissertation has applied at least one of the mentioned techniques to the following problems. Novel method to parallelize plane sweep based geometric intersection for GPU with directives is presented. Parallelization of plane sweep based Voronoi construction, parallelization of Segment tree construction, Segment tree queries and Segment tree-based operations has been presented. Spatial autocorrelation, computation of getis-ord hotspots are also presented. Acceleration performance and speedup results are presented in each corresponding chapter

    Escaping Depressions in LRTS Based on Incremental Refinement of Encoded Quad-Trees

    Get PDF
    In the context of robot navigation, game AI, and so on, real-time search is extensively used to undertake motion planning. Though it satisfies the requirement of quick response to users’ commands and environmental changes, learning real-time search (LRTS) suffers from the heuristic depressions where agents behave irrationally. There have introduced several effective solutions, such as state abstractions. This paper combines LRTS and encoded quad-tree abstraction which represent the search space in multiresolutions. When exploring the environments, agents are enabled to locally repair the quad-tree models and incrementally refine the spatial cognition. By virtue of the idea of state aggregation and heuristic generalization, our EQ LRTS (encoded quad-tree based LRTS) possesses the ability of quickly escaping from heuristic depressions with less state revisitations. Experiments and analysis show that (a) our encoding principle for quad-trees is a much more memory-efficient method than other data structures expressing quad-trees, (b) EQ LRTS differs a lot in several characteristics from classical PR LRTS which represent the space and refine the paths hierarchically, and (c) EQ LRTS substantially reduces the planning amount and curtails heuristic updates compared with LRTS on uniform cells

    Searching for patterns in Conway's Game of Life

    Get PDF
    Conway’s Game of Life (Life) is a simple cellular automaton, discovered by John Conway in 1970, that exhibits complex emergent behavior. Life-enthusiasts have been looking for building blocks with specific properties (patterns) to answer unsolved problems in Life for the past five decades. Finding patterns in Life is difficult due to the large search space. Current search algorithms use an explorative approach based on the rules of the game, but this can only sample a small fraction of the search space. More recently, people have used Sat solvers to search for patterns. These solvers are not specifically tuned to this problem and thus waste a lot of time processing Life’s rules in an engine that does not understand them. We propose a novel Sat-based approach that replaces the binary tree used by traditional Sat solvers with a grid-based approach, complemented by an injection of Game of Life specific knowledge. This leads to a significant speedup in searching. As a fortunate side effect, our solver can be generalized to solve general Sat problems. Because it is grid-based, all manipulations are embarrassingly parallel, allowing implementation on massively parallel hardware

    Logic learning and optimized drawing: two hard combinatorial problems

    Get PDF
    Nowadays, information extraction from large datasets is a recurring operation in countless fields of applications. The purpose leading this thesis is to ideally follow the data flow along its journey, describing some hard combinatorial problems that arise from two key processes, one consecutive to the other: information extraction and representation. The approaches here considered will focus mainly on metaheuristic algorithms, to address the need for fast and effective optimization methods. The problems studied include data extraction instances, as Supervised Learning in Logic Domains and the Max Cut-Clique Problem, as well as two different Graph Drawing Problems. Moreover, stemming from these main topics, other additional themes will be discussed, namely two different approaches to handle Information Variability in Combinatorial Optimization Problems (COPs), and Topology Optimization of lightweight concrete structures

    First IJCAI International Workshop on Graph Structures for Knowledge Representation and Reasoning (GKR@IJCAI'09)

    Get PDF
    International audienceThe development of effective techniques for knowledge representation and reasoning (KRR) is a crucial aspect of successful intelligent systems. Different representation paradigms, as well as their use in dedicated reasoning systems, have been extensively studied in the past. Nevertheless, new challenges, problems, and issues have emerged in the context of knowledge representation in Artificial Intelligence (AI), involving the logical manipulation of increasingly large information sets (see for example Semantic Web, BioInformatics and so on). Improvements in storage capacity and performance of computing infrastructure have also affected the nature of KRR systems, shifting their focus towards representational power and execution performance. Therefore, KRR research is faced with a challenge of developing knowledge representation structures optimized for large scale reasoning. This new generation of KRR systems includes graph-based knowledge representation formalisms such as Bayesian Networks (BNs), Semantic Networks (SNs), Conceptual Graphs (CGs), Formal Concept Analysis (FCA), CPnets, GAI-nets, all of which have been successfully used in a number of applications. The goal of this workshop is to bring together the researchers involved in the development and application of graph-based knowledge representation formalisms and reasoning techniques

    Investigating the Impact of Covid-19 on Mobility Condition.

    Get PDF
    Having large number of vehicles operating in the freeways of Houston daily, the mobility concern is high as some of the freeways in Houston are among the most congested freeways in United States. During the COVID-19 pandemic, the less congested freeways led to over speeding resulting in various crashes and even fatality. This resulted in changing of drivers; and ultimately the mobility patterns were changed during the study years of 2019, 2020 and 2021. To better understand how this mobility pattern changed over the three years, this research used Machine Learning algorithms to examine the mobility of freeways in Houston during that time. For this purpose, a model was developed using python coding which considered operating speed and other independent variables to understand the change of the traffic mobility. Several methods were used in the study to check the effectiveness of Artificial Intelligence modeling. To check how the mobility was impacted over the years, Violin Plots were also plotted to illustrate the change of operating speed from year 2019 to 2021. The results of this research demonstrated that there are eight factors that have significant effects on the vehicular mobility. Among them, annual average daily traffic is the most influencing in traffic mobility study whereas K-factor is the least effective among the selected variables. Relative countermeasures were recommended according to the influencing factors that were identified
    • …
    corecore