65 research outputs found

    Parallelizing message schedules to accelerate the computations of hash functions

    Get PDF
    This paper describes an algorithm for accelerating the computations of Davies-Meyer based hash functions. It is based on parallelizing the computation of several message schedules for several message blocks of a given message. This parallelization, together with the proper use of vector processor instructions (SIMD) improves the overall algorithm’s performance. Using this method, we obtain a new software implementation of SHA-256 that performs at 12.11 Cycles/Byte on the 2nd and 10.84 Cycles/Byte on the 3rd Generation Intel® Core™ processors. We also show how to extend the method to the soon-to-come AVX2 architecture, which has wider registers. Since processors with AVX2 will be available only in 2013, exact performance reporting is not yet possible. Instead, we show that our resulting SHA-256 and SHA-512 implementations have a reduced number of instructions. Based on our findings, we make some observations on the SHA3 competition. We argue that if the prospective SHA3 standard is expected to be competitive against the performance of SHA-256 or SHA-512, on the high end platforms, then its performance should be well below 10 Cycles/Byte on the current, and certainly on the near future processors. Not all the SHA3 finalists have this performance. Furthermore, even the fastest finalists will probably offer only a small performance advantage over the current SHA-256 and SHA-512 implementations

    Optimizing Hash-Based Signatures in Java

    Get PDF
    Hash-based signature schemes are an extensively studied and well-understood choice for quantum-safe digital signatures. However, certain operations, most notably the key generation, can be comparably expensive. It is, therefore, essential to use well-optimized implementations. This thesis aims to explore, implement, and evaluate optimization strategies for hashbased signature implementations in Java. These include the use of special hardware features like vector instructions and hardware acceleration for hash functions as well as the parallelization of the key generation. Overall, we are able to reduce the time required for an XMSS key generation with SHA-2 by up to 96.4% (on four CPU cores) compared to the unmodified BouncyCastle implementation. For SPHINCS+ with the Haraka hash function family, we achieve a reduction of up to 95.7% on only one CPU core. Furthermore, we investigate the use of two scheme variants WOTS-BR and WOTS+C proposed in the literature for verification-optimized signatures. We improve the existing theoretical analysis of both, provide a comparison and experimentally validate our improved theoretical analysis

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Cryptographic Hash Functions

    Get PDF

    Design, Cryptanalysis and Protection of Symmetric Encryption Algorithms

    Get PDF
    This thesis covers results from several areas related to symmetric cryptography, secure and efficient implementation and is divided into four main parts: In Part II, Benchmarking of AEAD, two articles will be presented, showing the results of the FELICS framework for Authenticated encryption algorithms, and multiarchitecture benchmarking of permutations used as construction block of AEAD algorithms. The Sparkle family of Hash and AEAD algorithms will be shown in Part III. Sparkle is currently a finalist of the NIST call for standardization of lightweight hash and AEAD algorithms. In Part IV, Cryptanalysis of ARX ciphers, it is discussed two cryptanalysis techniques based on differential trails, applied to ARX ciphers. The first technique, called Meet-in-the-Filter uses an offline trail record, combined with a fixed trail and a reverse differential search to propose long differential trails that are useful for key recovery. The second technique is an extension of ARX analyzing tools, that can automate the generation of truncated trails from existing non-truncated ones, and compute the exact probability of those truncated trails. In Part V, Masked AES for Microcontrollers, is shown a new method to efficiently compute a side-channel protected AES, based on the masking scheme described by Rivain and Prouff. This method introduces table and execution-order optimizations, as well as practical security proofs

    Implementing IPsec using the Five-layer security framework and FPGAs.

    Get PDF

    Trusted Computing für adaptive Automobilsteuergeräte im Umfeld der Inter-Fahrzeug-Kommunikation

    Get PDF
    Die vorliegende Arbeit beschäftigt sich mit der Sicherheit (Security) von Automobilelektronik, speziell der Kommunikation zwischen Fahrzeugen für Safety-Anwendungen. Hierzu wird die Absicherung der Kommunikation über digitale Signaturen betrachtet und eine prototypische Implementierung auf rekonfigurierbarer Hardware vorgestellt. Darüber hinaus wird die Absicherung der Kommunikationsplattform selbst über die Anwendung von Trusted Computing für rekonfigurierbare Systeme sichergestellt

    Trusted Computing für adaptive Automobilsteuergeräte im Umfeld der Inter-Fahrzeug-Kommunikation

    Get PDF
    Die vorliegende Arbeit beschäftigt sich mit der Sicherheit (Security) von Automobilelektronik, speziell der Kommunikation zwischen Fahrzeugen für Safety-Anwendungen. Hierzu wird die Absicherung der Kommunikation über digitale Signaturen betrachtet und eine prototypische Implementierung auf rekonfigurierbarer Hardware vorgestellt. Darüber hinaus wird die Absicherung der Kommunikationsplattform selbst über die Anwendung von Trusted Computing für rekonfigurierbare Systeme sichergestellt

    Theoretical and practical efficiency aspects in cryptography

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore