367 research outputs found

    Speeding Up Algorithmic Debugging Using Balanced Execution Trees

    Full text link
    Algorithmic debugging is a debugging technique that uses a data structure representing all computations performed during the execution of a program. This data structure is the so-called Execution Tree and it strongly influences the performance of the technique. In this work we present a transformation that automatically improves the structure of the execution trees by collapsing and projecting some strategic nodes. This improvement in the structure implies a better behavior and performance of the standard algorithms that traverse it. We prove that the transformation is sound in the sense that all the bugs found after the transformation are real bugs; and if at least one bug is detectable before the transformation, then at least one bug will also be detectable after the transformation. We have implemented the technique and performed several experiments with real applications. The experimental results confirm the usefulness of the technique.This work has been partially supported by the Spanish Ministerio de Ciencia e Innovación under grants TIN2008-06622-C03-02 and TIN2012-39391-004-04, by the Generalitat Valenciana under grant ACOMP/2009/017, and by the Comunidad de Madrid under grant S2009/TIC-1465. David Insa has been partially supported by the Spanish Ministerio de Educación under grant AP2010-4415.Silva, J.; Insa Cabrera, D.; Riesco, A. (2013). Speeding Up Algorithmic Debugging Using Balanced Execution Trees. En Tests and Proofs. Springer. 133-151. https://doi.org/10.1007/978-3-642-38916-0_8S133151Binks, D.: Declarative Debugging in Gödel. PhD thesis, University of Bristol (1995)Caballero, R.: A Declarative Debugger of Incorrect Answers for Constraint Functional-Logic Programs. In: Proc. of the 2005 ACM SIGPLAN Workshop on Curry and Functional Logic Programming, WCFLP 2005, pp. 8–13. ACM Press (2005)Caballero, R., Hermanns, C., Kuchen, H.: Algorithmic debugging of Java programs. In: López-Fraguas, F.J. (ed.) Proc. of the 15th Workshop on Functional and (Constraint) Logic Programming, WFLP 2006, Madrid, Spain. ENTCS, vol. 177, pp. 75–89. Elsevier (2007)Calejo, M.: A Framework for Declarative Prolog Debugging. PhD thesis, New University of Lisbon (1992)Davie, T., Chitil, O.: Hat-delta: One Right Does Make a Wrong. In: Seventh Symposium on Trends in Functional Programming, TFP 2006 (April 2006)Hirunkitti, V., Hogger, C.J.: A Generalised Query Minimisation for Program Debugging. In: Fritzson, P.A. (ed.) AADEBUG 1993. LNCS, vol. 749, pp. 153–170. Springer, Heidelberg (1993)Insa, D., Silva, J.: Scaling up algorithmic debugging with virtual execution trees. In: Alpuente, M. (ed.) LOPSTR 2010. LNCS, vol. 6564, pp. 149–163. Springer, Heidelberg (2011)Insa, D., Silva, J., Riesco, A.: Speeding up algorithmic debugging using balanced execution trees—detailed results. Technical Report 04/13, Departamento de Sistemas Informáticos y Computación (April 2013)Kokai, G., Nilson, J., Niss, C.: GIDTS: A Graphical Programming Environment for Prolog. In: Workshop on Program Analysis For Software Tools and Engineering, PASTE 1999, pp. 95–104. ACM Press (1999)MacLarty, I.: Practical Declarative Debugging of Mercury Programs. PhD thesis, Department of Computer Science and Software Engineering, University of Melbourne (2005)Maeji, M., Kanamori, T.: Top-Down Zooming Diagnosis of Logic Programs. Technical Report TR-290, Japan (1987)Nilsson, H.: Declarative Debugging for Lazy Functional Languages. PhD thesis, Linköping, Sweden (May 1998)Nilsson, H., Fritzson, P.: Algorithmic Debugging for Lazy Functional Languages. Journal of Functional Programming 4(3), 337–370 (1994)Shapiro, E.Y.: Algorithmic Program Debugging. MIT Press (1982)Silva, J.: A Survey on Algorithmic Debugging Strategies. Advances in Engineering Software 42(11), 976–991 (2011

    A Generalized Model for Algorithmic Debugging

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-27436-2_16Algorithmic debugging is a semi-automatic debugging technique that is present in practically all mature programming languages. In this paper we claim that the state of the practice in algorithmic debugging is a step forward compared to the state of the theory. In particular, we argue that novel techniques for algorithmic debugging cannot be supported by the standard internal data structures used in this technique, and a generalization of the standard definitions and algorithms is needed. We identify two specific problems of the standard formulation and implementations of algorithmic debugging, and we propose a reformulation to solve both problems. The reformulation has been done in a paradigm-independent manner to make it useful and reusable in different programming languages.This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economía y Competitividad (Secretaría de Estado de Investigación, Desarrollo e Innovación) under Grant TIN2013-44742-C4-1-R and by the Generalitat Valenciana under Grant PROMETEOII/2015/013. David Insa was partially supported by the Spanish Ministerio de Educación under FPU Grant AP2010-4415.Insa Cabrera, D.; Silva Galiana, JF. (2015). A Generalized Model for Algorithmic Debugging. En Logic-Based Program Synthesis and Transformation. Springer. 261-276. https://doi.org/10.1007/978-3-319-27436-2_16261276Eclipse (2003). http://www.eclipse.org/Barbour, T., Naish, L.: Declarative debugging of a logical-functional language. Technical report, University of Melbourne (1994)Braßel, B., Siegel, H.: Debugging lazy functional programs by asking the oracle. In: Chitil, O., Horváth, Z., Zsók, V. (eds.) IFL 2007. LNCS, vol. 5083, pp. 183–200. Springer, Heidelberg (2008)Caballero, R.: A declarative debugger of incorrect answers for constraint functional-logic programs. In: Proceedings of the 2005 ACM-SIGPLAN Workshop on Curry and Functional Logic Programming (WCFLP 2005), pp. 8–13. ACM Press, New York, USA (2005)Caballero, R., Martin-Martin, E., Riesco, A., Tamarit, S.: EDD: A declarative debugger for sequential erlang programs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 581–586. Springer, Heidelberg (2014)Caballero, R., Riesco, A., Verdejo, A., Martí-Oliet, N.: Simplifying questions in maude declarative debugger by transforming proof trees. In: Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 73–89. Springer, Heidelberg (2012)Cheda, D., Silva, J.: State of the practice in algorithmic debugging. Electron. Notes Theor. Comput. Sci. 246, 55–70 (2009)Davie, T., Chitil, O.: Hat-delta: one right does make a wrong. In: Butterfield, A., (ed.) Proceedings of the 17th International Workshop on Implementation and Application of Functional Languages (IFL 2005), p. 11, September 2005Davie, T., Chitil, O.: Hat-delta: One right does make a wrong. In: Proceedings of the 7th Symposium on Trends in Functional Programming (TFP 2006), April 2006Fritzson, P., Shahmehri, N., Kamkar, M., Gyimóthy, T.: Generalized algorithmic debugging and testing. ACM Lett. Program. Lang. Syst. (LOPLAS) 1(4), 303–322 (1992)González, J., Insa, D., Silva, J.: A new hybrid debugging architecture for eclipse. In: Gupta, G., Peña, R. (eds.) LOPSTR 2013, LNCS 8901. LNCS, vol. 8901, pp. 183–201. Springer, Heidelberg (2014)Hermanns, C., Kuchen, H.: Hybrid debugging of java programs. In: Escalona, M.J., Cordeiro, J., Shishkov, B. (eds.) ICSOFT 2011. CCIS, vol. 303, pp. 91–107. Springer, Heidelberg (2013)Insa, D., Silva, J.: An algorithmic debugger for java. In: Proceedings of the 26th IEEE International Conference on Software Maintenance (ICSM 2010), pp. 1–6 (2010)Insa, D., Silva, J.: Automatic transformation of iterative loops into recursive methods. Inf. Soft. Technol. 58, 95–109 (2015)Insa, D., Silva, J., Riesco, A.: Speeding up algorithmic debugging using balanced execution trees. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 133–151. Springer, Heidelberg (2013)Insa, D., Silva, J., Tomás, C.: Enhancing declarative debugging with loop expansion and tree compression. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 71–88. Springer, Heidelberg (2013)Lloyd, J.: Declarative error diagnosis. New Gener. Comput. 5(2), 133–154 (1987)Lux, M.: Münster Curry User’s Guide, May 2006. http://danae.uni-muenster.de/lux/curry/user.pdf ,MacLarty, I.D.: Practical Declarative Debugging of Mercury Programs. Ph.D. thesis, University of Melbourne (2005)Naish, L., Dart, P.W., Zobel, J.: The NU-Prolog debugging environment. In: Porto, A. (ed.) Proceedings of the 6th International Conference on Logic Programming (ICLP 1989), pp. 521–536. Lisboa, Portugal (1989)Nilsson, H.: Declarative Debugging for Lazy Functional Languages. Ph.D. thesis, Linköping, Sweden, May 1998Nilsson, H.: How to look busy while being as lazy as ever: the implementation of a lazy functional debugger. J. Funct. Program. 11(6), 629–671 (2001)Nilsson, H., Fritzson, P.: Algorithmic debugging for lazy functional languages. J. Funct. Program. 4(3), 337–370 (1994)Nilsson, H., Sparud, J.: The evaluation dependence tree: an execution record for lazy functional debugging. Technical report, Department of Computer and Information Science, Linköping (1996)Nilsson, H., Sparud, J.: The evaluation dependence tree as a basis for lazy functional debugging. Autom. Softw. Eng. 4(2), 121–150 (1997)Pope, B.: A Declarative Debugger for Haskell. Ph.D. thesis, The University of Melbourne, Australia (2006)Shapiro, E.: Algorithmic Program Debugging. MIT Press, Cambridge (1982)Shapiro, E.Y.: Inductive inference of theories from facts. Technical report RR 192, Yale University (New Haven, CT US) (1981)Silva, J.: A survey on algorithmic debugging strategies. Adv. Eng. Softw. 42(11), 976–991 (2011)Silva, J.: A vocabulary of program slicing-based techniques. ACM Comput. Surv. 44(3), 1–12 (2012)Thompson, B., Naish, L.: A guide to the nu-prolog debugging environment. Technical report, University of Melbourne (1997

    A Survey of Algorithmic Debugging

    Full text link
    "© ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Computing Surveys, {50, 4, 2017} https://dl.acm.org/doi/10.1145/3106740"[EN] Algorithmic debugging is a technique proposed in 1982 by E. Y. Shapiro in the context of logic programming. This survey shows how the initial ideas have been developed to become a widespread debugging schema ftting many diferent programming paradigms and with applications out of the program debugging feld. We describe the general framework and the main issues related to the implementations in diferent programming paradigms and discuss several proposed improvements and optimizations. We also review the main algorithmic debugger tools that have been implemented so far and compare their features. From this comparison, we elaborate a summary of desirable characteristics that should be considered when implementing future algorithmic debuggers.This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economia y Competitividad under grant TIN2013-44742-C4-1-R, TIN2016-76843-C4-1-R, StrongSoft (TIN2012-39391-C04-04), and TRACES (TIN2015-67522-C3-3-R) by the Generalitat Valenciana under grant PROMETEO-II/2015/013 (SmartLogic) and by the Comunidad de Madrid project N-Greens Software-CM (S2013/ICE-2731).Caballero, R.; Riesco, A.; Silva, J. (2017). A Survey of Algorithmic Debugging. ACM Computing Surveys. 50(4):1-35. https://doi.org/10.1145/3106740S135504Abramson, D., Foster, I., Michalakes, J., & Sosič, R. (1996). Relative debugging. Communications of the ACM, 39(11), 69-77. doi:10.1145/240455.240475K. R. Apt H. A. Blair and A. Walker. 1988. Towards a theory of declarative knowledge. In Foundations of Deductive Databases and Logic Programming J. Minker (Ed.). Morgan Kaufmann Publishers Inc. San Francisco CA 89--148. 10.1016/B978-0-934613-40-8.50006-3 K. R. Apt H. A. Blair and A. Walker. 1988. Towards a theory of declarative knowledge. In Foundations of Deductive Databases and Logic Programming J. Minker (Ed.). Morgan Kaufmann Publishers Inc. San Francisco CA 89--148. 10.1016/B978-0-934613-40-8.50006-3Arora, T., Ramakrishnan, R., Roth, W. G., Seshadri, P., & Srivastava, D. (1993). Explaining program execution in deductive systems. Lecture Notes in Computer Science, 101-119. doi:10.1007/3-540-57530-8_7E. Av-Ron. 1984. Top-Down Diagnosis of Prolog Programs. Ph.D. Dissertation. Weizmann Institute. E. Av-Ron. 1984. Top-Down Diagnosis of Prolog Programs. Ph.D. Dissertation. Weizmann Institute.A. Beaulieu. 2005. Learning SQL. O’Reilly Farnham UK. A. Beaulieu. 2005. Learning SQL. O’Reilly Farnham UK.D. Binks. 1995. Declarative Debugging in Gödel. Ph.D. Dissertation. University of Bristol. D. Binks. 1995. Declarative Debugging in Gödel. Ph.D. Dissertation. University of Bristol.B. Braßel and H. Siegel. 2008. Debugging Lazy Functional Programs by Asking the Oracle. Springer-Verlag Berlin 183--200. DOI:http://dx.doi.org/10.1007/978-3-540-85373-2_11 10.1007/978-3-540-85373-2_11 B. Braßel and H. Siegel. 2008. Debugging Lazy Functional Programs by Asking the Oracle. Springer-Verlag Berlin 183--200. DOI:http://dx.doi.org/10.1007/978-3-540-85373-2_11 10.1007/978-3-540-85373-2_11Caballero, R. (2005). A declarative debugger of incorrect answers for constraint functional-logic programs. Proceedings of the 2005 ACM SIGPLAN workshop on Curry and functional logic programming - WCFLP ’05. doi:10.1145/1085099.1085102Caballero, R., García-Ruiz, Y., & Sáenz-Pérez, F. (2012). Declarative Debugging of Wrong and Missing Answers for SQL Views. Lecture Notes in Computer Science, 73-87. doi:10.1007/978-3-642-29822-6_9Caballero, R., García-Ruiz, Y., & Sáenz-Pérez, F. (2015). Debugging of wrong and missing answers for datalog programs with constraint handling rules. Proceedings of the 17th International Symposium on Principles and Practice of Declarative Programming - PPDP ’15. doi:10.1145/2790449.2790522Caballero, R., Martin-Martin, E., Riesco, A., & Tamarit, S. (2015). A zoom-declarative debugger for sequential Erlang programs. Science of Computer Programming, 110, 104-118. doi:10.1016/j.scico.2015.06.011Caballero, R., & Rodríguez-Artalejo, M. (2002). A Declarative Debugging System for Lazy Functional Logic Programs. Electronic Notes in Theoretical Computer Science, 64, 113-175. doi:10.1016/s1571-0661(04)80349-9Ceri, S., Gottlob, G., & Tanca, L. (1989). What you always wanted to know about Datalog (and never dared to ask). IEEE Transactions on Knowledge and Data Engineering, 1(1), 146-166. doi:10.1109/69.43410Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 171-209. doi:10.1007/s11036-013-0489-0Chitil, O., & Davie, T. (2008). Comprehending finite maps for algorithmic debugging of higher-order functional programs. Proceedings of the 10th international ACM SIGPLAN symposium on Principles and practice of declarative programming - PPDP ’08. doi:10.1145/1389449.1389475Chitil, O., Faddegon, M., & Runciman, C. (2016). A Lightweight Hat. Proceedings of the 28th Symposium on the Implementation and Application of Functional Programming Languages - IFL 2016. doi:10.1145/3064899.3064904O. Chitil C. Runciman and M. Wallace. 2001. Freja Hat and Hood—A Comparative Evaluation of Three Systems for Tracing and Debugging Lazy Functional Programs. Springer Berlin 176--193. O. Chitil C. Runciman and M. Wallace. 2001. Freja Hat and Hood—A Comparative Evaluation of Three Systems for Tracing and Debugging Lazy Functional Programs. Springer Berlin 176--193.O. Chitil C. Runciman and Malcolm Wallace. 2003. Transforming Haskell for Tracing. Springer-Verlag Berlin 165--181. DOI:http://dx.doi.org/10.1007/3-540-44854-3_11 10.1007/3-540-44854-3_11 O. Chitil C. Runciman and Malcolm Wallace. 2003. Transforming Haskell for Tracing. Springer-Verlag Berlin 165--181. DOI:http://dx.doi.org/10.1007/3-540-44854-3_11 10.1007/3-540-44854-3_11Minh Ngoc Dinh, Abramson, D., & Chao Jin. (2014). Scalable Relative Debugging. IEEE Transactions on Parallel and Distributed Systems, 25(3), 740-749. doi:10.1109/tpds.2013.86Faddegon, M., & Chitil, O. (2015). Algorithmic debugging of real-world haskell programs: deriving dependencies from the cost centre stack. ACM SIGPLAN Notices, 50(6), 33-42. doi:10.1145/2813885.2737985Faddegon, M., & Chitil, O. (2016). Lightweight computation tree tracing for lazy functional languages. Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation - PLDI 2016. doi:10.1145/2908080.2908104Ferrand, G. (1987). Error diagnosis in logic programming an adaptation of E.Y. Shapiro’s method. The Journal of Logic Programming, 4(3), 177-198. doi:10.1016/0743-1066(87)90001-xFritzson, P., Shahmehri, N., Kamkar, M., & Gyimothy, T. (1992). Generalized algorithmic debugging and testing. ACM Letters on Programming Languages and Systems, 1(4), 303-322. doi:10.1145/161494.161498Fromherz, M. P. J. (s. f.). Towards declarative debugging of concurrent constraint programs. Lecture Notes in Computer Science, 88-100. doi:10.1007/bfb0019403Harman, M., & Hierons, R. (2001). An overview of program slicing. Software Focus, 2(3), 85-92. doi:10.1002/swf.41F. Henderson T. Conway Z. Somogyi D. Jeffery P. Schachte S. Taylor C. Speirs T. Dowd R. Becket M. Brown and P. Wang. 2014. The Mercury Language Reference Manual (Version 14.01.1). The University of Melbourne. F. Henderson T. Conway Z. Somogyi D. Jeffery P. Schachte S. Taylor C. Speirs T. Dowd R. Becket M. Brown and P. Wang. 2014. The Mercury Language Reference Manual (Version 14.01.1). The University of Melbourne.C. Hermanns and H. Kuchen. 2013. Hybrid Debugging of Java Programs. Springer-Verlag Berlin 91--107. DOI:http://dx.doi.org/10.1007/978-3-642-36177-7_6 10.1007/978-3-642-36177-7_6 C. Hermanns and H. Kuchen. 2013. Hybrid Debugging of Java Programs. Springer-Verlag Berlin 91--107. DOI:http://dx.doi.org/10.1007/978-3-642-36177-7_6 10.1007/978-3-642-36177-7_6Hirunkitti, V., & Hogger, C. J. (s. f.). A generalised query minimisation for program debugging. Lecture Notes in Computer Science, 153-170. doi:10.1007/bfb0019407Hughes, J. (2010). Software Testing with QuickCheck. Lecture Notes in Computer Science, 183-223. doi:10.1007/978-3-642-17685-2_6G. Hutton. 2016. Programming in Haskell. Cambridge University Press Cambridge UK. G. Hutton. 2016. Programming in Haskell. Cambridge University Press Cambridge UK.Insa, D., & Silva, J. (2010). An algorithmic debugger for Java. 2010 IEEE International Conference on Software Maintenance. doi:10.1109/icsm.2010.5609661Insa, D., & Silva, J. (2011). Optimal Divide and Query. Lecture Notes in Computer Science, 224-238. doi:10.1007/978-3-642-24769-9_17Insa, D., & Silva, J. (2011). An optimal strategy for algorithmic debugging. 2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011). doi:10.1109/ase.2011.6100055D. Insa and J. Silva. 2011c. Scaling Up Algorithmic Debugging with Virtual Execution Trees. Springer-Verlag Berlin 149--163. DOI:http://dx.doi.org/10.1007/978-3-642-20551-4_10 10.1007/978-3-642-20551-4_10 D. Insa and J. Silva. 2011c. Scaling Up Algorithmic Debugging with Virtual Execution Trees. Springer-Verlag Berlin 149--163. DOI:http://dx.doi.org/10.1007/978-3-642-20551-4_10 10.1007/978-3-642-20551-4_10D. Insa and J. Silva. 2015a. Automatic transformation of iterative loops into recursive methods. Information 8 Software Technology 58 (2015) 95--109. DOI:http://dx.doi.org/10.1016/j.infsof.2014.10.001 10.1016/j.infsof.2014.10.001 D. Insa and J. Silva. 2015a. Automatic transformation of iterative loops into recursive methods. Information 8 Software Technology 58 (2015) 95--109. DOI:http://dx.doi.org/10.1016/j.infsof.2014.10.001 10.1016/j.infsof.2014.10.001Insa, D., & Silva, J. (2015). A Generalized Model for Algorithmic Debugging. Lecture Notes in Computer Science, 261-276. doi:10.1007/978-3-319-27436-2_16Insa, D., Silva, J., & Riesco, A. (2013). Speeding Up Algorithmic Debugging Using Balanced Execution Trees. Lecture Notes in Computer Science, 133-151. doi:10.1007/978-3-642-38916-0_8Insa, D., Silva, J., & Tomás, C. (2013). Enhancing Declarative Debugging with Loop Expansion and Tree Compression. Lecture Notes in Computer Science, 71-88. doi:10.1007/978-3-642-38197-3_6K. Jensen and N. Wirth. 1974. PASCAL User Manual and Report. Springer-Verlag Berlin. 10.1007/978-3-662-21554-8 K. Jensen and N. Wirth. 1974. PASCAL User Manual and Report. Springer-Verlag Berlin. 10.1007/978-3-662-21554-8Jia, Y., & Harman, M. (2011). An Analysis and Survey of the Development of Mutation Testing. IEEE Transactions on Software Engineering, 37(5), 649-678. doi:10.1109/tse.2010.62Kamkar, M., Shahmehri, N., & Fritzson, P. (s. f.). Bug localization by algorithmic debugging and program slicing. Lecture Notes in Computer Science, 60-74. doi:10.1007/bfb0024176S. Köhler B. Ludäscher and Y. Smaragdakis. 2012. Declarative Datalog Debugging for Mere Mortals. Springer-Verlag Berlin 111--122. S. Köhler B. Ludäscher and Y. Smaragdakis. 2012. Declarative Datalog Debugging for Mere Mortals. Springer-Verlag Berlin 111--122.Kouh, H.-J., & Yoo, W.-H. (2003). The Efficient Debugging System for Locating Logical Errors in Java Programs. Lecture Notes in Computer Science, 684-693. doi:10.1007/3-540-44839-x_72Benzmüller, C., & Miller, D. (2014). Automation of Higher-Order Logic. Handbook of the History of Logic, 215-254. doi:10.1016/b978-0-444-51624-4.50005-8Kowalski, R., & Kuehner, D. (1971). Linear resolution with selection function. Artificial Intelligence, 2(3-4), 227-260. doi:10.1016/0004-3702(71)90012-9K. Kuchcinski W. Drabent and J. Maluszynski. 1993. Automatic Diagnosis of VLSI Digital Circuits Using Algorithmic Debugging. Springer-Verlag Berlin 350--367. DOI:http://dx.doi.org/10.1007/BFb0019419 10.1007/BFb0019419 K. Kuchcinski W. Drabent and J. Maluszynski. 1993. Automatic Diagnosis of VLSI Digital Circuits Using Algorithmic Debugging. Springer-Verlag Berlin 350--367. DOI:http://dx.doi.org/10.1007/BFb0019419 10.1007/BFb0019419S. Liang. 1999. Java Native Interface: Programmer’s Guide and Reference (1st ed.). Addison-Wesley Longman Publishing Co. Inc. Boston MA. S. Liang. 1999. Java Native Interface: Programmer’s Guide and Reference (1st ed.). Addison-Wesley Longman Publishing Co. Inc. Boston MA.Lloyd, J. W. (1987). Declarative error diagnosis. New Generation Computing, 5(2), 133-154. doi:10.1007/bf03037396J. W. Lloyd. 1987b. Foundations of Logic Programming (2nd ed.). Springer-Verlag Berlin. 10.1007/978-3-642-83189-8 J. W. Lloyd. 1987b. Foundations of Logic Programming (2nd ed.). Springer-Verlag Berlin. 10.1007/978-3-642-83189-8W. Lux. 2006. Münster Curry User’s guide (Release 0.9.10 of May 10 2006). Retrieved from http://danae.uni-muenster.de/∼lux/curry/user.pdf. W. Lux. 2006. Münster Curry User’s guide (Release 0.9.10 of May 10 2006). Retrieved from http://danae.uni-muenster.de/∼lux/curry/user.pdf.Lux, W. (2008). Declarative Debugging Meets the World. Electronic Notes in Theoretical Computer Science, 216, 65-77. doi:10.1016/j.entcs.2008.06.034I. MacLarty. 2005. Practical Declarative Debugging of Mercury Programs. Ph.D. Dissertation. Department of Computer Science and Software Engineering The University of Melbourne. I. MacLarty. 2005. Practical Declarative Debugging of Mercury Programs. Ph.D. Dissertation. Department of Computer Science and Software Engineering The University of Melbourne.Naganuma, J., Ogura, T., & Hoshino, T. (s. f.). High-level design validation using algorithmic debugging. Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC. doi:10.1109/edtc.1994.326833Naish, L. (1992). Declarative diagnosis of missing answers. New Generation Computing, 10(3), 255-285. doi:10.1007/bf03037939H. Nilsson. 1998. Declarative Debugging for Lazy Functional Languages. Ph.D. Dissertation. Linköping Sweden. H. Nilsson. 1998. Declarative Debugging for Lazy Functional Languages. Ph.D. Dissertation. Linköping Sweden.NILSSON, H. (2001). How to look busy while being as lazy as ever: the Implementation of a lazy functional debugger. Journal of Functional Programming, 11(6), 629-671. doi:10.1017/s095679680100418xNilsson, H., & Fritzson, P. (s. f.). Algorithmic debugging for lazy functional languages. Lecture Notes in Computer Science, 385-399. doi:10.1007/3-540-55844-6_149Nilsson, H., & Fritzson, P. (1994). Algorithmic debugging for lazy functional languages. Journal of Functional Programming, 4(3), 337-369. doi:10.1017/s095679680000109xNilsson, H., & Sparud, J. (1997). Automated Software Engineering, 4(2), 121-150. doi:10.1023/a:1008681016679Ostrand, T. J., & Balcer, M. J. (1988). The category-partition method for specifying and generating fuctional tests. Communications of the ACM, 31(6), 676-686. doi:10.1145/62959.62964Pereira, L. M. (1986). Rational debugging in logic programming. Third International Conference on Logic Programming, 203-210. doi:10.1007/3-540-16492-8_76B. Pope. 2006. A Declarative Debugger for Haskell. Ph.D. Dissertation. The University of Melbourne Australia. B. Pope. 2006. A Declarative Debugger for Haskell. Ph.D. Dissertation. The University of Melbourne Australia.Ramakrishnan, R., & Ullman, J. D. (1995). A survey of deductive database systems. The Journal of Logic Programming, 23(2), 125-149. doi:10.1016/0743-1066(94)00039-9Riesco, A., Verdejo, A., Martí-Oliet, N., & Caballero, R. (2012). Declarative debugging of rewriting logic specifications. The Journal of Logic and Algebraic Programming, 81(7-8), 851-897. doi:10.1016/j.jlap.2011.06.004DeRose, L., Gontarek, A., Vose, A., Moench, R., Abramson, D., Dinh, M. N., & Jin, C. (2015). Relative debugging for a highly parallel hybrid computer system. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on - SC ’15. doi:10.1145/2807591.2807605Runeson, P. (2006). A survey of unit testing practices. IEEE Software, 23(4), 22-29. doi:10.1109/ms.2006.91Russo, F., & Sancassani, M. (1992). A declarative debugging environment for DATALOG. Lecture Notes in Computer Science, 433-441. doi:10.1007/3-540-55460-2_32E. Y. Shapiro. 1982a. Algorithmic Program Debugging. MIT Press Cambridge MA. E. Y. Shapiro. 1982a. Algorithmic Program Debugging. MIT Press Cambridge MA.Shapiro, E. Y. (1982). Algorithmic program diagnosis. Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’82. doi:10.1145/582153.582185Shmueli, O., & Tsur, S. (1991). Logical diagnosis ofLDL programs. New Generation Computing, 9(3-4), 277-303. doi:10.1007/bf03037166Silva, J. (s. f.). A Comparative Study of Algorithmic Debugging Strategies. Lecture Notes in Computer Science, 143-159. doi:10.1007/978-3-540-71410-1_11Silva, J. (2011). A survey on algorithmic debugging strategies. Advances in Engineering Software, 42(11), 976-991. doi:10.1016/j.advengsoft.2011.05.024Silva, J., & Chitil, O. (2006). Combining algorithmic debugging and program slicing. Proceedings of the 8th ACM SIGPLAN symposium on Principles and practice of declarative programming - PPDP ’06. doi:10.1145/1140335.1140355J. A. Silva E. R. Faria R. C. Barros E. R. Hruschka A. C. P. L. F. de Carvalho and J. Gama. 2013. Data stream clustering: A survey. Comput. Surv. 46 1 Article 13 (July 2013) 31 pages.DOI:http://dx.doi.org/10.1145/2522968.2522981 10.1145/2522968.2522981 J. A. Silva E. R. Faria R. C. Barros E. R. Hruschka A. C. P. L. F. de Carvalho and J. Gama. 2013. Data stream clustering: A survey. Comput. Surv. 46 1 Article 13 (July 2013) 31 pages.DOI:http://dx.doi.org/10.1145/2522968.2522981 10.1145/2522968.2522981SOSIČ, R., & ABRAMSON, D. (1997). Guard: A Relative Debugger. Software: Practice and Experience, 27(2), 185-206. doi:10.1002/(sici)1097-024x(199702)27:23.0.co;2-dL. Sterling and E. Shapiro. 1986. The Art of Prolog: Advanced Programming Techniques. The MIT Press Cambridge MA. L. Sterling and E. Shapiro. 1986. The Art of Prolog: Advanced Programming Techniques. The MIT Press Cambridge MA.P. Kambam Sugavanam. 2013. Debugging Framework for Attribute Grammars. Ph.D. Dissertation. University of Minnesota. P. Kambam Sugavanam. 2013. Debugging Framework for Attribute Grammars. Ph.D. Dissertation. University of Minnesota.Tamarit, S., Riesco, A., Martin-Martin, E., & Caballero, R. (2016). Debugging Meets Testing in Erlang. Lecture Notes in Computer Science, 171-180. doi:10.1007/978-3-319-41135-4_10A. Tessier and G. Ferrand. 2000. Declarative diagnosis in the CLP scheme. In Analysis and Visualization Tools for Constraint Programming: Constraint Debugging Pierre Deransart Manuel V. Hermenegildo and Jan Maluszynski (Eds.). Springer-Verlag Berlin 151--174. 10.1007/10722311_6 A. Tessier and G. Ferrand. 2000. Declarative diagnosis in the CLP scheme. In Analysis and Visualization Tools for Constraint Programming: Constraint Debugging Pierre Deransart Manuel V. Hermenegildo and Jan Maluszynski (Eds.). Springer-Verlag Berlin 151--174. 10.1007/10722311_6Zinn, C. (2013). Algorithmic Debugging for Intelligent Tutoring: How to Use Multiple Models and Improve Diagnosis. Lecture Notes in Computer Science, 272-283. doi:10.1007/978-3-642-40942-4_24Zinn, C. (2014). Algorithmic Debugging and Literate Programming to Generate Feedback in Intelligent Tutoring Systems. KI 2014: Advances in Artificial Intelligence, 37-48. doi:10.1007/978-3-319-11206-0_

    Optimization Techniques for Algorithmic Debugging

    Full text link
    [EN] Nowadays, undetected programming bugs produce a waste of billions of dollars per year to private and public companies and institutions. In spite of this, no significant advances in the debugging area that help developers along the software development process have been achieved yet. In fact, the same debugging techniques that were used 20 years ago are still being used now. Along the time, some alternatives have appeared, but there still is a long way for them to be useful enough to get into the software development process. One of them is algorithmic debugging, which abstracts the information the user has to investigate to debug the program, allowing them to focus on what is happening instead of how it is happening. This abstraction comes at a price: the granularity level of the bugs that can be detected allows for isolating wrongly implemented functions, but which part of them contains the bug cannot be found out yet. This thesis focusses on improving algorithmic debugging in many aspects. Concretely, the main aims of this thesis are to reduce the time the user needs to detect a programming bug as well as to provide the user with more detailed information about where the bug is located. To achieve these goals, some techniques have been developed to start the debugging sessions as soon as possible, to reduce the number of questions the user is going to be asked about, and to augment the granularity level of those bugs that algorithmic debugging can detect, allowing the debugger in this way to keep looking for bugs even inside functions. As a result of this thesis, three completely new techniques have been defined, an already existent technique has been improved, and two new algorithmic debugging search strategies have been defined that improve the already existent ones. Besides these theoretical results, a fully functional algorithmic debugger has been implemented that contains and supports all these techniques and strategies. This debugger is written in Java, and it debugs Java code. The election of this language is justified because it is currently one of the most widely extended and used languages. Also because it contains an interesting combination of unsolved challenges for algorithmic debugging. To further increase its usability, the debugger has been later adapted as an Eclipse plugin, so it could be used by a wider number of users. These two debuggers are publicly available, so any interested person can access them and continue with the research if they wish so.[ES] Hoy en día, los errores no detectados de programación suponen un gasto de miles de millones al año para las empresas e instituciones públicas y privadas. A pesar de esto, no ha habido ningún avance significativo en el área de la depuración que ayude a los desarrolladores durante la fase de desarrollo de software. De hecho, las mismas técnicas de depuración que se utilizaban hace 20 años se siguen utilizando ahora. A lo largo del tiempo, han surgido algunas alternativas, pero todavía queda un largo camino para que estas sean lo suficientemente útiles como para abrirse camino en el proceso de desarrollo de software. Una de ellas es la depuración algorítmica, la cual abstrae la información que el programador debe investigar para depurar el programa, permitiéndole de este modo centrarse en el qué está ocurriendo en vez de en el cómo. Esta abstracción tiene un coste: el nivel de granularidad de los errores que pueden detectarse nos permite como máximo aislar funciones mal implementadas, pero no averiguar qué parte de estas contiene el error. Esta tesis se centra en mejorar la depuración algorítmica en muchos aspectos. Concretamente, los principales objetivos de esta tesis son reducir el tiempo que el usuario necesita para detectar un error de programación así como proporcionar información más detallada de dónde se encuentra el error. Para conseguir estos objetivos, se han desarrollado técnicas para iniciar las sesiones de depuración lo antes posible, reducir el número de preguntas que se le van a realizar al usuario, y aumentar el nivel de granularidad de los errores que la depuración algorítmica puede detectar, permitiendo así seguir buscando el error incluso dentro de las funciones. Como resultado de esta tesis, se han definido tres técnicas completamente nuevas, se ha mejorado una técnica ya existente, y se han definido dos nuevas estrategias de depuración algorítmica que mejoran las previamente existentes. Además de los resultados teóricos, también se ha desarrollado un depurador algorítmico completamente funcional que contiene y respalda todas estas técnicas y estrategias. Este depurador está escrito en Java y depura código Java. La elección de este lenguaje se justifica debido a que es uno de los lenguajes más ampliamente extendidos y usados actualmente. También debido a que contiene una combinación interesante de retos todavía sin resolver para la depuración algorítmica. Para aumentar todavía más su usabilidad, el depurador ha sido posteriormente adaptado como un plugin de Eclipse, de tal manera que pudiese ser usado por un número más amplio de usuarios. Estos dos depuradores están públicamente disponibles para que cualquier persona interesada pueda acceder a ellos y continuar con la investigación si así lo deseara.[CA] Hui en dia, els errors no detectats de programació suposen una despesa de milers de milions a l'any per a les empreses i institucions públiques i privades. Tot i això, no hi ha hagut cap avanç significatiu en l'àrea de la depuració que ajude als desenvolupadors durant la fase de desenvolupament de programari. De fet, les mateixes tècniques de depuració que s'utilitzaven fa 20 anys es continuen utilitzant ara. Al llarg del temps, han sorgit algunes alternatives, però encara queda un llarg camí perquè estes siguen prou útils com per a obrir-se camí en el procés de desenvolupament de programari. Una d'elles és la depuració algorítmica, la qual abstrau la informació que el programador ha d'investigar per a depurar el programa, permetent-li d'esta manera centrar-se en el què està ocorrent en compte de en el com. Esta abstracció té un cost: el nivell de granularitat dels errors que poden detectar-se ens permet com a màxim aïllar funcions mal implementades, però no esbrinar quina part d'estes conté l'error. Esta tesi es centra a millorar la depuració algorítmica en molts aspectes. Concretament, els principals objectius d'esta tesi són reduir el temps que l'usuari necessita per a detectar un error de programació així com proporcionar informació més detallada d'on es troba l'error. Per a aconseguir estos objectius, s'han desenvolupat tècniques per a iniciar les sessions de depuració com més prompte millor, reduir el nombre de preguntes que se li formularan a l'usuari, i augmentar el nivell de granularitat dels errors que la depuració algorítmica pot detectar, permetent així continuar buscant l'error inclús dins de les funcions. Com resultat d'esta tesi, s'han definit tres tècniques completament noves, s'ha millorat una tècnica ja existent, i s'han definit dos noves estratègies de depuració algorítmica que milloren les prèviament existents. A més dels resultats teòrics, també s'ha desenvolupat un depurador algorítmic completament funcional que conté i protegix totes estes tècniques i estratègies. Este depurador està escrit en Java i depura codi Java. L'elecció d'este llenguatge es justifica pel fet que és un dels llenguatges més àmpliament estesos i usats actualment. També pel fet que conté una combinació interessant de reptes encara sense resoldre per a la depuració algorítmica. Per a augmentar encara més la seua usabilitat, el depurador ha sigut posteriorment adaptat com un plugin d'Eclipse, de tal manera que poguera ser usat per un nombre més ampli d'usuaris. Estos dos depuradors estan públicament disponibles perquè qualsevol persona interessada puga accedir a ells i continuar amb la investigació si així ho desitjara.Insa Cabrera, D. (2016). Optimization Techniques for Algorithmic Debugging [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/68506TESISPremios Extraordinarios de tesis doctorale

    A Generalization and Paradigm-Independent Reformulation of Algorithmic Debugging

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-27436-2_16Algorithmic debugging is a semi-automatic debugging technique that is present in practically all mature programming languages. In this paper we claim that the state of the practice in algorithmic debugging is a step forward compared to the state of the theory. In particular, we argue that novel techniques for algorithmic debugging cannot be supported by the standard internal data structures used in this technique, and a generalization of the standard definitions and algorithms is needed. We identify two specific problems of the standard formulation and implementations of algorithmic debugging, and we propose a reformulation to solve both problems. The reformulation has been done in a paradigm-independent manner to make it useful and reusable in different programming languages.This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economía y Competitividad (Secretaría de Estado de Investigación, Desarrollo e Innovación) under Grant TIN2013-44742-C4-1-R and by the Generalitat Valenciana under Grant PROMETEOII/2015/013. David Insa was partially supported by the Spanish Ministerio de Educación under FPU Grant AP2010-4415.Insa Cabrera, D.; Silva, J. (2015). A Generalization and Paradigm-Independent Reformulation of Algorithmic Debugging. Springer. 261-276. http://hdl.handle.net/10251/71738S261276Eclipse (2003). http://www.eclipse.org/Barbour, T., Naish, L.: Declarative debugging of a logical-functional language. Technical report, University of Melbourne (1994)Braßel, B., Siegel, H.: Debugging lazy functional programs by asking the oracle. In: Chitil, O., Horváth, Z., Zsók, V. (eds.) IFL 2007. LNCS, vol. 5083, pp. 183–200. Springer, Heidelberg (2008)Caballero, R.: A declarative debugger of incorrect answers for constraint functional-logic programs. In: Proceedings of the 2005 ACM-SIGPLAN Workshop on Curry and Functional Logic Programming (WCFLP 2005), pp. 8–13. ACM Press, New York, USA (2005)Caballero, R., Martin-Martin, E., Riesco, A., Tamarit, S.: EDD: A declarative debugger for sequential erlang programs. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014 (ETAPS). LNCS, vol. 8413, pp. 581–586. Springer, Heidelberg (2014)Caballero, R., Riesco, A., Verdejo, A., Martí-Oliet, N.: Simplifying questions in maude declarative debugger by transforming proof trees. In: Vidal, G. (ed.) LOPSTR 2011. LNCS, vol. 7225, pp. 73–89. Springer, Heidelberg (2012)Cheda, D., Silva, J.: State of the practice in algorithmic debugging. Electron. Notes Theor. Comput. Sci. 246, 55–70 (2009)Davie, T., Chitil, O.: Hat-delta: one right does make a wrong. In: Butterfield, A., (ed.) Proceedings of the 17th International Workshop on Implementation and Application of Functional Languages (IFL 2005), p. 11, September 2005Davie, T., Chitil, O.: Hat-delta: One right does make a wrong. In: Proceedings of the 7th Symposium on Trends in Functional Programming (TFP 2006), April 2006Fritzson, P., Shahmehri, N., Kamkar, M., Gyimóthy, T.: Generalized algorithmic debugging and testing. ACM Lett. Program. Lang. Syst. (LOPLAS) 1(4), 303–322 (1992)González, J., Insa, D., Silva, J.: A new hybrid debugging architecture for eclipse. In: Gupta, G., Peña, R. (eds.) LOPSTR 2013, LNCS 8901. LNCS, vol. 8901, pp. 183–201. Springer, Heidelberg (2014)Hermanns, C., Kuchen, H.: Hybrid debugging of java programs. In: Escalona, M.J., Cordeiro, J., Shishkov, B. (eds.) ICSOFT 2011. CCIS, vol. 303, pp. 91–107. Springer, Heidelberg (2013)Insa, D., Silva, J.: An algorithmic debugger for java. In: Proceedings of the 26th IEEE International Conference on Software Maintenance (ICSM 2010), pp. 1–6 (2010)Insa, D., Silva, J.: Automatic transformation of iterative loops into recursive methods. Inf. Soft. Technol. 58, 95–109 (2015)Insa, D., Silva, J., Riesco, A.: Speeding up algorithmic debugging using balanced execution trees. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 133–151. Springer, Heidelberg (2013)Insa, D., Silva, J., Tomás, C.: Enhancing declarative debugging with loop expansion and tree compression. In: Albert, E. (ed.) LOPSTR 2012. LNCS, vol. 7844, pp. 71–88. Springer, Heidelberg (2013)Lloyd, J.: Declarative error diagnosis. New Gener. Comput. 5(2), 133–154 (1987)Lux, M.: Münster Curry User’s Guide, May 2006. http://danae.uni-muenster.de/lux/curry/user.pdf ,MacLarty, I.D.: Practical Declarative Debugging of Mercury Programs. Ph.D. thesis, University of Melbourne (2005)Naish, L., Dart, P.W., Zobel, J.: The NU-Prolog debugging environment. In: Porto, A. (ed.) Proceedings of the 6th International Conference on Logic Programming (ICLP 1989), pp. 521–536. Lisboa, Portugal (1989)Nilsson, H.: Declarative Debugging for Lazy Functional Languages. Ph.D. thesis, Linköping, Sweden, May 1998Nilsson, H.: How to look busy while being as lazy as ever: the implementation of a lazy functional debugger. J. Funct. Program. 11(6), 629–671 (2001)Nilsson, H., Fritzson, P.: Algorithmic debugging for lazy functional languages. J. Funct. Program. 4(3), 337–370 (1994)Nilsson, H., Sparud, J.: The evaluation dependence tree: an execution record for lazy functional debugging. Technical report, Department of Computer and Information Science, Linköping (1996)Nilsson, H., Sparud, J.: The evaluation dependence tree as a basis for lazy functional debugging. Autom. Softw. Eng. 4(2), 121–150 (1997)Pope, B.: A Declarative Debugger for Haskell. Ph.D. thesis, The University of Melbourne, Australia (2006)Shapiro, E.: Algorithmic Program Debugging. MIT Press, Cambridge (1982)Shapiro, E.Y.: Inductive inference of theories from facts. Technical report RR 192, Yale University (New Haven, CT US) (1981)Silva, J.: A survey on algorithmic debugging strategies. Adv. Eng. Softw. 42(11), 976–991 (2011)Silva, J.: A vocabulary of program slicing-based techniques. ACM Comput. Surv. 44(3), 1–12 (2012)Thompson, B., Naish, L.: A guide to the nu-prolog debugging environment. Technical report, University of Melbourne (1997

    Parallel algorithms and architectures for VLSI pattern generation

    Get PDF

    Video Coding Performance

    Get PDF

    Code Generation and Global Optimization Techniques for a Reconfigurable PRAM-NUMA Multicore Architecture

    Full text link

    Versatile Montgomery Multiplier Architectures

    Get PDF
    Several algorithms for Public Key Cryptography (PKC), such as RSA, Diffie-Hellman, and Elliptic Curve Cryptography, require modular multiplication of very large operands (sizes from 160 to 4096 bits) as their core arithmetic operation. To perform this operation reasonably fast, general purpose processors are not always the best choice. This is why specialized hardware, in the form of cryptographic co-processors, become more attractive. Based upon the analysis of recent publications on hardware design for modular multiplication, this M.S. thesis presents a new architecture that is scalable with respect to word size and pipelining depth. To our knowledge, this is the first time a word based algorithm for Montgomery\u27s method is realized using high-radix bit-parallel multipliers working with two different types of finite fields (unified architecture for GF(p) and GF(2n)). Previous approaches have relied mostly on bit serial multiplication in combination with massive pipelining, or Radix-8 multiplication with the limitation to a single type of finite field. Our approach is centered around the notion that the optimal delay in bit-parallel multipliers grows with logarithmic complexity with respect to the operand size n, O(log3/2 n), while the delay of bit serial implementations grows with linear complexity O(n). Our design has been implemented in VHDL, simulated and synthesized in 0.5μ CMOS technology. The synthesized net list has been verified in back-annotated timing simulations and analyzed in terms of performance and area consumption

    Parallel computing 2011, ParCo 2011: book of abstracts

    Get PDF
    This book contains the abstracts of the presentations at the conference Parallel Computing 2011, 30 August - 2 September 2011, Ghent, Belgiu
    corecore