101 research outputs found

    Smart Tachograph: User manual for the sample cryptographic keys and digital certificates Generation Tool

    Get PDF
    In order to aid manufacturers, component personalisers, certification authorities and other Digital Tachograph stakeholders with the development and testing of equipment and systems complying with the Generation-2 Smart Tachograph specifications, a tool has been developed that can be used to generate sample cryptographic keys and digital certificates. Stakeholders may use this tool to generate keys and certificates with specific properties for their testing purposes.JRC.E.3-Cyber and Digital Citizens' Securit

    Traffic Congestion Pricing Methods and Technologies

    Get PDF
    This paper reviews the methods and technologies for congestion pricing of roads. Congestion tolls can be implemented at scales ranging from individual lanes on single links to national road networks. Tolls can be differentiated by time of day, road type and vehicle characteristics, and even set in real time according to current traffic conditions. Conventional toll booths have largely given way to electronic toll collection technologies. The main technology categories are roadside-only systems employing digital photography, tag and beacon systems that use short-range microwave technology, and in vehicle-only systems based on either satellite or cellular network communications. The best technology choice depends on the application. The rate at which congestion pricing is implemented, and its ultimate scope, will depend on what technology is used and on what other functions and services it can perform. Since congestion pricing calls for the greatest overall degree of toll differentiation, congestion pricing is likely to drive the technology choice.Road pricing; Congestion pricing; Electronic Toll Collection technology

    Traffic Congestion Pricing Methods and Technologies

    Get PDF
    This paper reviews the methods and technologies for congestion pricing of roads. Congestion tolls can be implemented at scales ranging from individual lanes on single links to national road networks. Tolls can be differentiated by time of day, road type and vehicle characteristics, and even set in real time according to current traffic conditions. Conventional toll booths have largely given way to electronic toll collection technologies. The main technology categories are roadside-only systems employing digital photography, tag and beacon systems that use short-range microwave technology, and in vehicle-only systems based on either satellite or cellular network communications. The best technology choice depends on the application. The rate at which congestion pricing is implemented, and its ultimate scope, will depend on what technology is used and on what other functions and services it can perform. Since congestion pricing calls for the greatest overall degree of toll differentiation, congestion pricing is likely to drive the technology choice

    Design, Development and Evaluation of 5G-Enabled Vehicular Services:The 5G-HEART Perspective

    Get PDF
    The ongoing transition towards 5G technology expedites the emergence of a variety of mobile applications that pertain to different vertical industries. Delivering on the key commitment of 5G, these diverse service streams, along with their distinct requirements, should be facilitated under the same unified network infrastructure. Consequently, in order to unleash the benefits brought by 5G technology, a holistic approach towards the requirement analysis and the design, development, and evaluation of multiple concurrent vertical services should be followed. In this paper, we focus on the Transport vertical industry, and we study four novel vehicular service categories, each one consisting of one or more related specific scenarios, within the framework of the “5G Health, Aquaculture and Transport (5G-HEART)” 5G PPP ICT-19 (Phase 3) project. In contrast to the majority of the literature, we provide a holistic overview of the overall life-cycle management required for the realization of the examined vehicular use cases. This comprises the definition and analysis of the network Key Performance Indicators (KPIs) resulting from high-level user requirements and their interpretation in terms of the underlying network infrastructure tasked with meeting their conflicting or converging needs. Our approach is complemented by the experimental investigation of the real unified 5G pilot’s characteristics that enable the delivery of the considered vehicular services and the initial trialling results that verify the effectiveness and feasibility of the presented theoretical analysis

    SInCom 2015

    Get PDF
    2nd Baden-WĂŒrttemberg Center of Applied Research Symposium on Information and Communication Systems, SInCom 2015, 13. November 2015 in Konstan

    Human factors : a new approach for designing the truck-driver system

    Get PDF
    The logistics sector is an often forgotten force behind modern life in the UK, and it is increasingly under pressure to become more efficient, more safety-conscious, and more environmentally sustainable. This triple bottom line necessitates deep changes to the traditional way of working. As evidenced by an expert-led technology forecast, many technological and organisational interventions are on the horizon for the next 15-30 years. This rapid pace of advancement, together with the frequent assumption that workers are ‘hyper-rational’, echoes a worrying pattern from other sectors that have since benefited from human factors & ergonomics (HF/E) expertise. This thesis aims to apply HF/E principles and methods to both current and projected future truck-driver scenarios, in order to leverage the most agile and intelligent agent in the logistics system: the human. Despite a lack of past work at this intersection, logistics and HF/E can be drawn together by their mutual use of systems complexity concepts. This thesis proposes that logistics is a large, complex adaptive socio-technical system (CASTS), and reviews HF/E methods to determine their fit to different system scales and dynamics. From this it is determined that initial work requires a bottom-up focus on the truck-driver system. A range of methods are employed to understand the existing truck driving task and what it requires of the modern driver; identify and prioritise potentially critical system ‘parts’; design new supportive technologies from scratch in a way that allows for emergent behaviour; and analytically prototype how truck-driver systems are likely to change in projected future scenarios. This work provides new practical insights for current truck-driver systems, and a map of how this may change – shedding light on potential future problems and how we might adapt to them before they occur. Not only does this thesis provide a solid empirical foundation and a ‘direction of travel’, it also contributes the methodological guidance necessary to strategise next steps beyond this thesis, into deeper logistics complexity. Taken together this demonstrates the power of human factors methods for logistics, and their potential for other unexplored ‘complex adaptive sociotechnical systems’ (CASTS)
    • 

    corecore