178 research outputs found

    EVALUATION OF INTELLIGIBILITY AND SPEAKER SIMILARITY OF VOICE TRANSFORMATION

    Get PDF
    Voice transformation refers to a class of techniques that modify the voice characteristics either to conceal the identity or to mimic the voice characteristics of another speaker. Its applications include automatic dialogue replacement and voice generation for people with voice disorders. The diversity in applications makes evaluation of voice transformation a challenging task. The objective of this research is to propose a framework to evaluate intentional voice transformation techniques. Our proposed framework is based on two fundamental qualities: intelligibility and speaker similarity. Intelligibility refers to the clarity of the speech content after voice transformation and speaker similarity measures how well the modified output disguises the source speaker. We measure intelligibility with word error rates and speaker similarity with likelihood of identifying the correct speaker. The novelty of our approach is, we consider whether similarly transformed training data are available to the recognizer. We have demonstrated that this factor plays a significant role in intelligibility and speaker similarity for both human testers and automated recognizers. We thoroughly test two classes of voice transformation techniques: pitch distortion and voice conversion, using our proposed framework. We apply our results for patients with voice hypertension using video self-modeling and preliminary results are presented

    Sound morphing by feature interpolation

    Full text link

    Listening to features

    Get PDF
    This work explores nonparametric methods which aim at synthesizing audio from low-dimensionnal acoustic features typically used in MIR frameworks. Several issues prevent this task to be straightforwardly achieved. Such features are designed for analysis and not for synthesis, thus favoring high-level description over easily inverted acoustic representation. Whereas some previous studies already considered the problem of synthesizing audio from features such as Mel-Frequency Cepstral Coefficients, they mainly relied on the explicit formula used to compute those features in order to inverse them. Here, we instead adopt a simple blind approach, where arbitrary sets of features can be used during synthesis and where reconstruction is exemplar-based. After testing the approach on a speech synthesis from well known features problem, we apply it to the more complex task of inverting songs from the Million Song Dataset. What makes this task harder is twofold. First, that features are irregularly spaced in the temporal domain according to an onset-based segmentation. Second the exact method used to compute these features is unknown, although the features for new audio can be computed using their API as a black-box. In this paper, we detail these difficulties and present a framework to nonetheless attempting such synthesis by concatenating audio samples from a training dataset, whose features have been computed beforehand. Samples are selected at the segment level, in the feature space with a simple nearest neighbor search. Additionnal constraints can then be defined to enhance the synthesis pertinence. Preliminary experiments are presented using RWC and GTZAN audio datasets to synthesize tracks from the Million Song Dataset.Comment: Technical Repor

    Deep Learning for Audio Signal Processing

    Full text link
    Given the recent surge in developments of deep learning, this article provides a review of the state-of-the-art deep learning techniques for audio signal processing. Speech, music, and environmental sound processing are considered side-by-side, in order to point out similarities and differences between the domains, highlighting general methods, problems, key references, and potential for cross-fertilization between areas. The dominant feature representations (in particular, log-mel spectra and raw waveform) and deep learning models are reviewed, including convolutional neural networks, variants of the long short-term memory architecture, as well as more audio-specific neural network models. Subsequently, prominent deep learning application areas are covered, i.e. audio recognition (automatic speech recognition, music information retrieval, environmental sound detection, localization and tracking) and synthesis and transformation (source separation, audio enhancement, generative models for speech, sound, and music synthesis). Finally, key issues and future questions regarding deep learning applied to audio signal processing are identified.Comment: 15 pages, 2 pdf figure

    A Parametric Sound Object Model for Sound Texture Synthesis

    Get PDF
    This thesis deals with the analysis and synthesis of sound textures based on parametric sound objects. An overview is provided about the acoustic and perceptual principles of textural acoustic scenes, and technical challenges for analysis and synthesis are considered. Four essential processing steps for sound texture analysis are identifi ed, and existing sound texture systems are reviewed, using the four-step model as a guideline. A theoretical framework for analysis and synthesis is proposed. A parametric sound object synthesis (PSOS) model is introduced, which is able to describe individual recorded sounds through a fi xed set of parameters. The model, which applies to harmonic and noisy sounds, is an extension of spectral modeling and uses spline curves to approximate spectral envelopes, as well as the evolution of parameters over time. In contrast to standard spectral modeling techniques, this representation uses the concept of objects instead of concatenated frames, and it provides a direct mapping between sounds of diff erent length. Methods for automatic and manual conversion are shown. An evaluation is presented in which the ability of the model to encode a wide range of di fferent sounds has been examined. Although there are aspects of sounds that the model cannot accurately capture, such as polyphony and certain types of fast modulation, the results indicate that high quality synthesis can be achieved for many different acoustic phenomena, including instruments and animal vocalizations. In contrast to many other forms of sound encoding, the parametric model facilitates various techniques of machine learning and intelligent processing, including sound clustering and principal component analysis. Strengths and weaknesses of the proposed method are reviewed, and possibilities for future development are discussed

    Creating music by listening

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2005.Includes bibliographical references (p. 127-139).Machines have the power and potential to make expressive music on their own. This thesis aims to computationally model the process of creating music using experience from listening to examples. Our unbiased signal-based solution models the life cycle of listening, composing, and performing, turning the machine into an active musician, instead of simply an instrument. We accomplish this through an analysis-synthesis technique by combined perceptual and structural modeling of the musical surface, which leads to a minimal data representation. We introduce a music cognition framework that results from the interaction of psychoacoustically grounded causal listening, a time-lag embedded feature representation, and perceptual similarity clustering. Our bottom-up analysis intends to be generic and uniform by recursively revealing metrical hierarchies and structures of pitch, rhythm, and timbre. Training is suggested for top-down un-biased supervision, and is demonstrated with the prediction of downbeat. This musical intelligence enables a range of original manipulations including song alignment, music restoration, cross-synthesis or song morphing, and ultimately the synthesis of original pieces.by Tristan Jehan.Ph.D

    Improving the Speech Intelligibility By Cochlear Implant Users

    Get PDF
    In this thesis, we focus on improving the intelligibility of speech for cochlear implants (CI) users. As an auditory prosthetic device, CI can restore hearing sensations for most patients with profound hearing loss in both ears in a quiet background. However, CI users still have serious problems in understanding speech in noisy and reverberant environments. Also, bandwidth limitation, missing temporal fine structures, and reduced spectral resolution due to a limited number of electrodes are other factors that raise the difficulty of hearing in noisy conditions for CI users, regardless of the type of noise. To mitigate these difficulties for CI listener, we investigate several contributing factors such as the effects of low harmonics on tone identification in natural and vocoded speech, the contribution of matched envelope dynamic range to the binaural benefits and contribution of low-frequency harmonics to tone identification in quiet and six-talker babble background. These results revealed several promising methods for improving speech intelligibility for CI patients. In addition, we investigate the benefits of voice conversion in improving speech intelligibility for CI users, which was motivated by an earlier study showing that familiarity with a talker’s voice can improve understanding of the conversation. Research has shown that when adults are familiar with someone’s voice, they can more accurately – and even more quickly – process and understand what the person is saying. This theory identified as the “familiar talker advantage” was our motivation to examine its effect on CI patients using voice conversion technique. In the present research, we propose a new method based on multi-channel voice conversion to improve the intelligibility of transformed speeches for CI patients

    Dysarthric Speech Recognition and Offline Handwriting Recognition using Deep Neural Networks

    Get PDF
    Millions of people around the world are diagnosed with neurological disorders like Parkinson’s, Cerebral Palsy or Amyotrophic Lateral Sclerosis. Due to the neurological damage as the disease progresses, the person suffering from the disease loses control of muscles, along with speech deterioration. Speech deterioration is due to neuro motor condition that limits manipulation of the articulators of the vocal tract, the condition collectively called as dysarthria. Even though dysarthric speech is grammatically and syntactically correct, it is difficult for humans to understand and for Automatic Speech Recognition (ASR) systems to decipher. With the emergence of deep learning, speech recognition systems have improved a lot compared to traditional speech recognition systems, which use sophisticated preprocessing techniques to extract speech features. In this digital era there are still many documents that are handwritten many of which need to be digitized. Offline handwriting recognition involves recognizing handwritten characters from images of handwritten text (i.e. scanned documents). This is an interesting task as it involves sequence learning with computer vision. The task is more difficult than Optical Character Recognition (OCR), because handwritten letters can be written in virtually infinite different styles. This thesis proposes exploiting deep learning techniques like Convolutional Neural Networks (CNN) and Recurrent Neural Networks (RNN) for offline handwriting recognition. For speech recognition, we compare traditional methods for speech recognition with recent deep learning methods. Also, we apply speaker adaptation methods both at feature level and at parameter level to improve recognition of dysarthric speech

    computational toy to enhance narrative perspective-talking

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2002.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Includes bibliographical references (leaves 88-95).School curricula are designed with the expectation that students achieve literacy. They usually support the acquisition of language by encouraging students to learn how to decode information within a sentence. In this thesis it is suggested that literacy skills in children five to seven years of age can be obtained with a broader understanding of language and its representation. Oral storytelling is presented as a way to develop metacognitive skills with a focus on character-based narrative where children must create the perspectives of the characters. The ability to tell stories is common to children from every community and can help them in school performance. Children should therefore be encouraged to express their understanding of character perspectives in oral storytelling. This thesis presents a tangible interface that allows children to practice pre-literacy skills using oral language. It introduces Dolltalk, a system that facilitates children's ability to take narrative perspectives through the mechanism of reporting speech. The toy presented works by asking children to tell stories and by playing back the stories to the child using narrative features. The ability to express the way the characters think and feel in a narrative and what motivates them to act has been shown to be predictive of academic competence among preschool children. A user study was conducted to understand the short-term effect of Dolltalk on children's elaboration of internal states of story characters. The results show that playing with Dolltalk encourages children to introduce their characters in the story and to express the internal states of their characters much more than with the use of a simple tape recorder. The results also show that playing with the current version of Dolltalk or with Dolltalk in tape-recorder mode encourages children to provide spatial and temporal information in their stories much more than they would without hearing any playback of their stories. This thesis presents significant results (p =.04) that indicate the current version of Dolltalk encourages children to express the internal states of their characters.by Catherine N. Vaucelle.S.M
    • …
    corecore