6,379 research outputs found

    From holism to compositionality: memes and the evolution of segmentation, syntax, and signification in music and language

    Get PDF
    Steven Mithen argues that language evolved from an antecedent he terms “Hmmmmm, [meaning it was] Holistic, manipulative, multi-modal, musical and mimetic”. Owing to certain innate and learned factors, a capacity for segmentation and cross-stream mapping in early Homo sapiens broke the continuous line of Hmmmmm, creating discrete replicated units which, with the initial support of Hmmmmm, eventually became the semantically freighted words of modern language. That which remained after what was a bifurcation of Hmmmmm arguably survived as music, existing as a sound stream segmented into discrete units, although one without the explicit and relatively fixed semantic content of language. All three types of utterance – the parent Hmmmmm, language, and music – are amenable to a memetic interpretation which applies Universal Darwinism to what are understood as language and musical memes. On the basis of Peter Carruthers’ distinction between ‘cognitivism’ and ‘communicativism’ in language, and William Calvin’s theories of cortical information encoding, a framework is hypothesized for the semantic and syntactic associations between, on the one hand, the sonic patterns of language memes (‘lexemes’) and of musical memes (‘musemes’) and, on the other hand, ‘mentalese’ conceptual structures, in Chomsky’s ‘Logical Form’ (LF)

    Open Problems in the Emergence and Evolution of Linguistic Communication: A Road-Map for Research

    Get PDF

    Symbol Emergence in Robotics: A Survey

    Full text link
    Humans can learn the use of language through physical interaction with their environment and semiotic communication with other people. It is very important to obtain a computational understanding of how humans can form a symbol system and obtain semiotic skills through their autonomous mental development. Recently, many studies have been conducted on the construction of robotic systems and machine-learning methods that can learn the use of language through embodied multimodal interaction with their environment and other systems. Understanding human social interactions and developing a robot that can smoothly communicate with human users in the long term, requires an understanding of the dynamics of symbol systems and is crucially important. The embodied cognition and social interaction of participants gradually change a symbol system in a constructive manner. In this paper, we introduce a field of research called symbol emergence in robotics (SER). SER is a constructive approach towards an emergent symbol system. The emergent symbol system is socially self-organized through both semiotic communications and physical interactions with autonomous cognitive developmental agents, i.e., humans and developmental robots. Specifically, we describe some state-of-art research topics concerning SER, e.g., multimodal categorization, word discovery, and a double articulation analysis, that enable a robot to obtain words and their embodied meanings from raw sensory--motor information, including visual information, haptic information, auditory information, and acoustic speech signals, in a totally unsupervised manner. Finally, we suggest future directions of research in SER.Comment: submitted to Advanced Robotic

    Why pitch sensitivity matters : event-related potential evidence of metric and syntactic violation detection among spanish late learners of german

    Get PDF
    Event-related potential (ERP) data in monolingual German speakers have shown that sentential metric expectancy violations elicit a biphasic ERP pattern consisting of an anterior negativity and a posterior positivity (P600). This pattern is comparable to that elicited by syntactic violations. However, proficient French late learners of German do not detect violations of metric expectancy in German. They also show qualitatively and quantitatively different ERP responses to metric and syntactic violations. We followed up the questions whether (1) latter evidence results from a potential pitch cue insensitivity in speech segmentation in French speakers, or (2) if the result is founded in rhythmic language differences. Therefore, we tested Spanish late learners of German, as Spanish, contrary to French, uses pitch as a segmentation cue even though the basic segmentation unit is the same in French and Spanish (i.e., the syllable). We report ERP responses showing that Spanish L2 learners are sensitive to syntactic as well as metric violations in German sentences independent of attention to task in a P600 response. Overall, the behavioral performance resembles that of German native speakers. The current data suggest that Spanish L2 learners are able to extract metric units (trochee) in their L2 (German) even though their basic segmentation unit in Spanish is the syllable. In addition Spanish in contrast to French L2 learners of German are sensitive to syntactic violations indicating a tight link between syntactic and metric competence. This finding emphasizes the relevant role of metric cues not only in L2 prosodic but also in syntactic processing

    Learning the Semantics of Manipulation Action

    Full text link
    In this paper we present a formal computational framework for modeling manipulation actions. The introduced formalism leads to semantics of manipulation action and has applications to both observing and understanding human manipulation actions as well as executing them with a robotic mechanism (e.g. a humanoid robot). It is based on a Combinatory Categorial Grammar. The goal of the introduced framework is to: (1) represent manipulation actions with both syntax and semantic parts, where the semantic part employs Îť\lambda-calculus; (2) enable a probabilistic semantic parsing schema to learn the Îť\lambda-calculus representation of manipulation action from an annotated action corpus of videos; (3) use (1) and (2) to develop a system that visually observes manipulation actions and understands their meaning while it can reason beyond observations using propositional logic and axiom schemata. The experiments conducted on a public available large manipulation action dataset validate the theoretical framework and our implementation

    Towards an implementable dependency grammar

    Full text link
    The aim of this paper is to define a dependency grammar framework which is both linguistically motivated and computationally parsable. See the demo at http://www.conexor.fi/analysers.html#testingComment: 10 page

    Thematic Annotation: extracting concepts out of documents

    Get PDF
    Contrarily to standard approaches to topic annotation, the technique used in this work does not centrally rely on some sort of -- possibly statistical -- keyword extraction. In fact, the proposed annotation algorithm uses a large scale semantic database -- the EDR Electronic Dictionary -- that provides a concept hierarchy based on hyponym and hypernym relations. This concept hierarchy is used to generate a synthetic representation of the document by aggregating the words present in topically homogeneous document segments into a set of concepts best preserving the document's content. This new extraction technique uses an unexplored approach to topic selection. Instead of using semantic similarity measures based on a semantic resource, the later is processed to extract the part of the conceptual hierarchy relevant to the document content. Then this conceptual hierarchy is searched to extract the most relevant set of concepts to represent the topics discussed in the document. Notice that this algorithm is able to extract generic concepts that are not directly present in the document.Comment: Technical report EPFL/LIA. 81 pages, 16 figure

    Statistical Parsing by Machine Learning from a Classical Arabic Treebank

    Get PDF
    Research into statistical parsing for English has enjoyed over a decade of successful results. However, adapting these models to other languages has met with difficulties. Previous comparative work has shown that Modern Arabic is one of the most difficult languages to parse due to rich morphology and free word order. Classical Arabic is the ancient form of Arabic, and is understudied in computational linguistics, relative to its worldwide reach as the language of the Quran. The thesis is based on seven publications that make significant contributions to knowledge relating to annotating and parsing Classical Arabic. Classical Arabic has been studied in depth by grammarians for over a thousand years using a traditional grammar known as i’rāb (إعغاة ). Using this grammar to develop a representation for parsing is challenging, as it describes syntax using a hybrid of phrase-structure and dependency relations. This work aims to advance the state-of-the-art for hybrid parsing by introducing a formal representation for annotation and a resource for machine learning. The main contributions are the first treebank for Classical Arabic and the first statistical dependency-based parser in any language for ellipsis, dropped pronouns and hybrid representations. A central argument of this thesis is that using a hybrid representation closely aligned to traditional grammar leads to improved parsing for Arabic. To test this hypothesis, two approaches are compared. As a reference, a pure dependency parser is adapted using graph transformations, resulting in an 87.47% F1-score. This is compared to an integrated parsing model with an F1-score of 89.03%, demonstrating that joint dependency-constituency parsing is better suited to Classical Arabic. The Quran was chosen for annotation as a large body of work exists providing detailed syntactic analysis. Volunteer crowdsourcing is used for annotation in combination with expert supervision. A practical result of the annotation effort is the corpus website: http://corpus.quran.com, an educational resource with over two million users per year
    • …
    corecore