404 research outputs found

    NASA JSC neural network survey results

    Get PDF
    A survey of Artificial Neural Systems in support of NASA's (Johnson Space Center) Automatic Perception for Mission Planning and Flight Control Research Program was conducted. Several of the world's leading researchers contributed papers containing their most recent results on artificial neural systems. These papers were broken into categories and descriptive accounts of the results make up a large part of this report. Also included is material on sources of information on artificial neural systems such as books, technical reports, software tools, etc

    Progress in Speech Recognition for Romanian Language

    Get PDF

    String Measure Applied to String Self-Organizing Maps and Networks of Evolutionary Processors

    Get PDF
    * Supported by projects CCG08-UAM TIC-4425-2009 and TEC2007-68065-C03-02This paper shows some ideas about how to incorporate a string learning stage in self-organizing algorithms. T. Kohonen and P. Somervuo have shown that self-organizing maps (SOM) are not restricted to numerical data. This paper proposes a symbolic measure that is used to implement a string self-organizing map based on SOM algorithm. Such measure between two strings is a new string. Computation over strings is performed using a priority relationship among symbols; in this case, symbolic measure is able to generate new symbols. A complementary operation is defined in order to apply such measure to DNA strands. Finally, an algorithm is proposed in order to be able to implement a string self-organizing map

    SHOE:The extraction of hierarchical structure for machine learning of natural language

    Get PDF

    Evaluation of preprocessors for neural network speaker verification

    Get PDF

    Dialogue Act Recognition Approaches

    Get PDF
    This paper deals with automatic dialogue act (DA) recognition. Dialogue acts are sentence-level units that represent states of a dialogue, such as questions, statements, hesitations, etc. The knowledge of dialogue act realizations in a discourse or dialogue is part of the speech understanding and dialogue analysis process. It is of great importance for many applications: dialogue systems, speech recognition, automatic machine translation, etc. The main goal of this paper is to study the existing works about DA recognition and to discuss their respective advantages and drawbacks. A major concern in the DA recognition domain is that, although a few DA annotation schemes seem now to emerge as standards, most of the time, these DA tag-sets have to be adapted to the specificities of a given application, which prevents the deployment of standardized DA databases and evaluation procedures. The focus of this review is put on the various kinds of information that can be used to recognize DAs, such as prosody, lexical, etc., and on the types of models proposed so far to capture this information. Combining these information sources tends to appear nowadays as a prerequisite to recognize DAs

    Constructivist Artificial Intelligence With Genetic Programming

    Get PDF
    Learning is an essential attribute of an intelligent system. A proper understanding of the process of learning in terms of knowledge-acquisition, processing and its effective use has been one of the main goals of artificial intelligence (AI). AI, in order to achieve the desired flexibility, performance levels and wide applicability should explore and exploit a variety of learning techniques and representations. Evolutionary algorithms, in recent years, have emerged as powerful learning methods employing task-independent approaches to problem solving and are potential candidates for implementing adaptive computational models. These algorithms, due to their attractive features such as implicit and explicit parallelism, can also be powerful meta-leaming tools for other learning systems such as connectionist networks. These networks, also known as artificial neural networks, offer a paradigm for learning at an individual level that provide an extremely rich landscape of learning mechanisms which AI should exploit. The research proposed in this thesis investigates the role of genetic programming (GP) in connectionism, a learning paradigm that, despite being extremely powerful has a number of limitations. The thesis, by systematically identifying the reasons for these limitations has argued as to why connectionism should be approached with a new perspective in order to realize its true potentialities. With genetic-based designs the key issue has been the encoding strategy. That is, how to encode a neural network within a genotype so as to achieve an optimum network structure and/ or an efficient learning that can best solve a given problem. This in turn raises a number of key questions such as: 1. Is the representation (that is the genotype) that the algorithms employ sufficient to express and explore the vast space of network architectures and learning mechanisms? 2. Is the representation capable of capturing the concepts of hierarchy and modularity that are vital and so naturally employed by humans in problem-solving? 3. Are some representations better in expressing these? If so, how to exploit the strengths that are inherent to these representations? 4. If the aim is really to automate the design process what strategies should be employed so as to minimize the involvement of a designer in the design loop? 5. Is the methodology or the approach able to overcome at least some of the limitations that are commonly seen in connectionist networks? 6. Most importantly, how effective is the approach in problem-solving? These issues are investigated through a novel approach that combines genetic programming and a self-organizing neural network which provides a framework for the simulations. Through the powerful notions of constructivism and micro-macro dynamics the approach provides a way of exploiting the potential features (such as the hierarchy and modularity) that are inherent to the representation that GP employs. By providing a general definition for learning and by imposing a single potential constraint within the representation the approach demonstrates that genetic programming, if used for construction and optimization, could be extremely creative. The method also combines the bottom-up and top-down strategies that are key to evolve ALife-like systems. A comparison with earlier methods is drawn to identify the merits of the proposed approach. A pattern recognition task is considered for illustration. Simulations suggest that genetic- programming can be a powerful meta-leaming tool for implementing useful network architectures and flexible learning mechanisms for self-organizing neural networks while interacting with a given task environment. It appears that it is possible to extend the novel approach further to other types of networks. Finally the role of flexible learning in implementing adaptive AI systems is discussed. A number of potential applications domain is identified
    • …
    corecore