2,928 research outputs found

    Efficient Adaptive Speech Reception Threshold Measurements Using Stochastic Approximation Algorithms

    Get PDF
    This study examines whether speech-in-noise tests that use adaptive procedures to assess a speech reception threshold in noise (SRT50n) can be optimized using stochastic approximation (SA) methods, especially in cochlear-implant (CI) users. A simulation model was developed that simulates intelligibility scores for words from sentences in noise for both CI users and normal-hearing (NH) listeners. The model was used in Monte Carlo simulations. Four different SA algorithms were optimized for use in both groups and compared with clinically used adaptive procedures. The simulation model proved to be valid, as its results agreed very well with existing experimental data. The four optimized SA algorithms all provided an efficient estimation of the SRT50n. They were equally accurate and produced smaller standard deviations (SDs) than the clinical procedures. In CI users, SRT50n estimates had a small bias and larger SDs than in NH listeners. At least 20 sentences per condition and an initial signal-to-noise ratio below the real SRT50n were required to ensure sufficient reliability. In CI users, bias and SD became unacceptably large for a maximum speech intelligibility score in quiet below 70%. In conclusion, SA algorithms with word scoring in adaptive speech-in-noise tests are applicable to various listeners, from CI users to NH listeners. In CI users, they lead to efficient estimation of the SRT50n as long as speech intelligibility in quiet is greater than 70%. SA procedures can be considered as a valid, more efficient, and alternative to clinical adaptive procedures currently used in CI users

    A Low-Cost Robust Distributed Linearly Constrained Beamformer for Wireless Acoustic Sensor Networks with Arbitrary Topology

    Full text link
    We propose a new robust distributed linearly constrained beamformer which utilizes a set of linear equality constraints to reduce the cross power spectral density matrix to a block-diagonal form. The proposed beamformer has a convenient objective function for use in arbitrary distributed network topologies while having identical performance to a centralized implementation. Moreover, the new optimization problem is robust to relative acoustic transfer function (RATF) estimation errors and to target activity detection (TAD) errors. Two variants of the proposed beamformer are presented and evaluated in the context of multi-microphone speech enhancement in a wireless acoustic sensor network, and are compared with other state-of-the-art distributed beamformers in terms of communication costs and robustness to RATF estimation errors and TAD errors

    Hearing screening by telephone:fundamentals & applications

    Get PDF

    On detectable and meaningful speech-intelligibility benefits

    Get PDF
    The most important parameter that affects the ability to hear and understand speech in the presence of background noise is the signal-to-noise ratio (SNR). Despite decades of research in speech intelligibility, it is not currently known how much improvement in SNR is needed to provide a meaningful benefit to someone. We propose that the underlying psychophysical basis to a meaningful benefit should be the just noticeable difference (JND) for SNR. The SNR JND was measured in a series of experiments using both adaptive and fixed-level procedures across participants of varying hearing ability. The results showed an average SNR JND of approximately 3 dB for sentences in same-spectrum noise. The role of the stimulus and link to intelligibility was examined by measuring speech-intelligibility psychometric functions and comparing the intelligibility JND estimated from those functions with measured SNR JNDs. Several experiments were then conducted to establish a just meaningful difference (JMD) for SNR. SNR changes that could induce intervention-seeking behaviour for an individual were measured with subjective scaling and report, using the same stimuli as the SNR JND experiment as pre- and post-benefit examples. The results across different rating and willingness-to-change tasks showed that the mean ratings increased near linearly with a change in SNR, but a change of at least 6 dB was necessary to reliably motivate participants to seek intervention. The magnitude of the JNDs and JMDs for speech-intelligibility benefits measured here suggest a gap between what is achievable and what is meaningful

    BPACE: A Bayesian, Patient-Centered Procedure for Matrix Speech Tests in Noise.

    Get PDF
    Matrix sentence tests in noise can be challenging to the listener and time-consuming. A trade-off should be found between testing time, listener's comfort and the precision of the results. Here, a novel test procedure based on an updated maximum likelihood method was developed and implemented in a German matrix sentence test. It determines the parameters of the psychometric function (threshold, slope, and lapse-rate) without constantly challenging the listener at the intelligibility threshold. A so-called "credible interval" was used as a mid-run estimate of reliability and can be used as a termination criterion for the test. The procedure was evaluated and compared to a STAIRCASE procedure in a study with 20 cochlear implant patients and 20 normal hearing participants. The proposed procedure offers comparable accuracy and reliability to the reference method, but with a lower listening effort, as rated by the listeners ( points on a 10-point scale). Test duration can be reduced by 1.3 min on average when a credible interval of 2 dB is used as the termination criterion instead of testing 30 sentences. Particularly, normal hearing listeners and well performing, cochlear implant users can benefit from shorter test duration. Although the novel procedure was developed for a German test, it can easily be applied to tests in any other language

    User-Symbiotic Speech Enhancement for Hearing Aids

    Get PDF
    • …
    corecore