3,450 research outputs found

    Synthesis using speaker adaptation from speech recognition DB

    Get PDF
    This paper deals with the creation of multiple voices from a Hidden Markov Model based speech synthesis system (HTS). More than 150 Catalan synthetic voices were built using Hidden Markov Models (HMM) and speaker adaptation techniques. Training data for building a Speaker-Independent (SI) model were selected from both a general purpose speech synthesis database (FestCat;) and a database design ed for training Automatic Speech Recognition (ASR) systems (Catalan SpeeCon database). The SpeeCon database was also used to adapt the SI model to different speakers. Using an ASR designed database for TTS purposes provided many different amateur voices, with few minutes of recordings not performed in studio conditions. This paper shows how speaker adaptation techniques provide the right tools to generate multiple voices with very few adaptation data. A subjective evaluation was carried out to assess the intelligibility and naturalness of the generated voices as well as the similarity of the adapted voices to both the original speaker and the average voice from the SI model.Peer ReviewedPostprint (published version

    The listening talker: A review of human and algorithmic context-induced modifications of speech

    Get PDF
    International audienceSpeech output technology is finding widespread application, including in scenarios where intelligibility might be compromised - at least for some listeners - by adverse conditions. Unlike most current algorithms, talkers continually adapt their speech patterns as a response to the immediate context of spoken communication, where the type of interlocutor and the environment are the dominant situational factors influencing speech production. Observations of talker behaviour can motivate the design of more robust speech output algorithms. Starting with a listener-oriented categorisation of possible goals for speech modification, this review article summarises the extensive set of behavioural findings related to human speech modification, identifies which factors appear to be beneficial, and goes on to examine previous computational attempts to improve intelligibility in noise. The review concludes by tabulating 46 speech modifications, many of which have yet to be perceptually or algorithmically evaluated. Consequently, the review provides a roadmap for future work in improving the robustness of speech output

    Does training with amplitude modulated tones affect tone-vocoded speech perception?

    Get PDF
    Temporal-envelope cues are essential for successful speech perception. We asked here whether training on stimuli containing temporal-envelope cues without speech content can improve the perception of spectrally-degraded (vocoded) speech in which the temporal-envelope (but not the temporal fine structure) is mainly preserved. Two groups of listeners were trained on different amplitude-modulation (AM) based tasks, either AM detection or AM-rate discrimination (21 blocks of 60 trials during two days, 1260 trials; frequency range: 4Hz, 8Hz, and 16Hz), while an additional control group did not undertake any training. Consonant identification in vocoded vowel-consonant-vowel stimuli was tested before and after training on the AM tasks (or at an equivalent time interval for the control group). Following training, only the trained groups showed a significant improvement in the perception of vocoded speech, but the improvement did not significantly differ from that observed for controls. Thus, we do not find convincing evidence that this amount of training with temporal-envelope cues without speech content provide significant benefit for vocoded speech intelligibility. Alternative training regimens using vocoded speech along the linguistic hierarchy should be explored

    Microphone Array Speech Enhancement Via Beamforming Based Deep Learning Network

    Get PDF
    In general, in-car speech enhancement is an application of the microphone array speech enhancement in particular acoustic environments. Speech enhancement inside the moving cars is always an interesting topic and the researchers work to create some modules to increase the quality of speech and intelligibility of speech in cars. The passenger dialogue inside the car, the sound of other equipment, and a wide range of interference effects are major challenges in the task of speech separation in-car environment. To overcome this issue, a novel Beamforming based Deep learning Network (Bf-DLN) has been proposed for speech enhancement. Initially, the captured microphone array signals are pre-processed using an Adaptive beamforming technique named Least Constrained Minimum Variance (LCMV). Consequently, the proposed method uses a time-frequency representation to transform the pre-processed data into an image. The smoothed pseudo-Wigner-Ville distribution (SPWVD) is used for converting time-domain speech inputs into images. Convolutional deep belief network (CDBN) is used to extract the most pertinent features from these transformed images. Enhanced Elephant Heard Algorithm (EEHA) is used for selecting the desired source by eliminating the interference source. The experimental result demonstrates the effectiveness of the proposed strategy in removing background noise from the original speech signal. The proposed strategy outperforms existing methods in terms of PESQ, STOI, SSNRI, and SNR. The PESQ of the proposed Bf-DLN has a maximum PESQ of 1.98, whereas existing models like Two-stage Bi-LSTM has 1.82, DNN-C has 1.75 and GCN has 1.68 respectively. The PESQ of the proposed method is 1.75%, 3.15%, and 4.22% better than the existing GCN, DNN-C, and Bi-LSTM techniques. The efficacy of the proposed method is then validated by experiments

    Spectral subtractive type speech enhancement methods

    Get PDF
    In this paper spectral subtractive method and some of its modification are compared. Performance of spectral subtraction, its limitations, artifacts introduced by it, and spectral subtraction modifications for eliminating these artifacts are discussed in the paper in details. The algorithms are compared based on SNR improvement introduced by them. Spectrograms of speech enhanced by the algorithms, which show the algorithms performance and degree of speech distortion, are also presented

    Effects of Coordinated Bilateral Hearing Aids and Auditory Training on Sound Localization

    Get PDF
    This thesis has two main objectives: 1) evaluating the benefits of the bilateral coordination of the hearing aid Digital Signal Processing (DSP) features by measuring and comparing the auditory performance with and without the activation of this coordination, and 2) evaluating the benefits of acclimatization and auditory training on such auditory performance and, determining whether receiving training in one aspect of auditory performance (sound localization) would generalize to an improvement in another aspect of auditory performance (speech intelligibility in noise), and to what extent. Two studies were performed. The first study evaluated the speech intelligibility in noise and horizontal sound localization abilities in HI listeners using hearing aids that apply bilateral coordination of WDRC. A significant improvement was noted in sound localization with bilateral coordination on when compared to off, while speech intelligibility in noise did not seem to be affected. The second study was an extension of the first study, with a suitable period for acclimatization provided and then the participants were divided into training and control groups. Only the training group received auditory training. The training group performance was significantly better than the control group performance in some conditions, in both the speech intelligibility and the localization tasks. The bilateral coordination did not have significant effects on the results of the second study. This work is among the early literature to investigate the impact of bilateral coordination in hearing aids on the users’ auditory performance. Also, this work is the first to demonstrate the effect of auditory training in sound localization on the speech intelligibility performance

    Analysis of very low quality speech for mask-based enhancement

    Get PDF
    The complexity of the speech enhancement problem has motivated many different solutions. However, most techniques address situations in which the target speech is fully intelligible and the background noise energy is low in comparison with that of the speech. Thus while current enhancement algorithms can improve the perceived quality, the intelligibility of the speech is not increased significantly and may even be reduced. Recent research shows that intelligibility of very noisy speech can be improved by the use of a binary mask, in which a binary weight is applied to each time-frequency bin of the input spectrogram. There are several alternative goals for the binary mask estimator, based either on the Signal-to-Noise Ratio (SNR) of each time-frequency bin or on the speech signal characteristics alone. Our approach to the binary mask estimation problem aims to preserve the important speech cues independently of the noise present by identifying time-frequency regions that contain significant speech energy. The speech power spectrum varies greatly for different types of speech sound. The energy of voiced speech sounds is concentrated in the harmonics of the fundamental frequency while that of unvoiced sounds is, in contrast, distributed across a broad range of frequencies. To identify the presence of speech energy in a noisy speech signal we have therefore developed two detection algorithms. The first is a robust algorithm that identifies voiced speech segments and estimates their fundamental frequency. The second detects the presence of sibilants and estimates their energy distribution. In addition, we have developed a robust algorithm to estimate the active level of the speech. The outputs of these algorithms are combined with other features estimated from the noisy speech to form the input to a classifier which estimates a mask that accurately reflects the time-frequency distribution of speech energy even at low SNR levels. We evaluate a mask-based speech enhancer on a range of speech and noise signals and demonstrate a consistent increase in an objective intelligibility measure with respect to noisy speech.Open Acces
    corecore