40 research outputs found

    Subband beamforming with higher order statistics for distant speech recognition

    Get PDF
    This dissertation presents novel beamforming methods for distant speech recognition (DSR). Such techniques can relieve users from the necessity of putting on close talking microphones. DSR systems are useful in many applications such as humanoid robots, voice control systems for automobiles, automatic meeting transcription systems and so on. A main problem in DSR is that recognition performance is seriously degraded when a speaker is far from the microphones. In order to avoid the degradation, noise and reverberation should be removed from signals received with the microphones. Acoustic beamforming techniques have a potential to enhance speech from the far field with little distortion since they can maintain a distortionless constraint for a look direction. In beamforming, multiple signals propagating from a position are captured with multiple microphones. Typical conventional beamformers then adjust their weights so as to minimize the variance of their own outputs subject to a distortionless constraint in a look direction. The variance is the average of the second power (square) of the beamformer\u27s outputs. Accordingly, it is considered that the conventional beamformer uses second orderstatistics (SOS) of the beamformer\u27s outputs. The conventional beamforming techniques can effectively place a null on any source of interference. However, the desired signal is also canceled in reverberant environments, which is known as the signal cancellation problem. To avoid that problem, many algorithms have been developed. However, none of the algorithms can essentially solve the signal cancellation problem in reverberant environments. While many efforts have been made in order to overcome the signal cancellation problem in the field of acoustic beamforming, researchers have addressed another research issue with the microphone array, that is, blind source separation (BSS) [1]. The BSS techniques aim at separating sources from the mixture of signals without information about the geometry of the microphone array and positions of sources. It is achieved by multiplying an un-mixing matrix with input signals. The un-mixing matrix is constructed so that the outputs are stochastically independent. Measuring the stochastic independence of the signals is based on the theory of the independent component analysis (ICA) [1]. The field of ICA is based on the fact that distributions of information-bearing signals are not Gaussian and distributions of sums of various signals are close to Gaussian. There are two popular criteria for measuring the degree of the non-Gaussianity, namely, kurtosis and negentropy. As described in detail in this thesis, both criteria use more than the second moment. Accordingly, it is referred to as higher order statistics (HOS) in contrast to SOS. HOS is not considered in the field of acoustic beamforming well although Arai et al. showed the similarity between acoustic beamforming and BSS [2]. This thesis investigates new beamforming algorithms which take into consideration higher-order statistics (HOS). The new beamforming methods adjust the beamformer\u27s weights based on one of the following criteria: • minimum mutual information of the two beamformer\u27s outputs, • maximum negentropy of the beamformer\u27s outputs and • maximum kurtosis of the beamformer\u27s outputs. Those algorithms do not suffer from the signal cancellation, which is shown in this thesis. Notice that the new beamforming techniques can keep the distortionless constraint for the direction of interest in contrast to the BSS algorithms. The effectiveness of the new techniques is finally demonstrated through a series of distant automatic speech recognition experiments on real data recorded with real sensors unlike other work where signals artificially convolved with measured impulse responses are considered. Significant improvements are achieved by the beamforming algorithms proposed here.Diese Dissertation präsentiert neue Methoden zur Spracherkennung auf Entfernung. Mit diesen Methoden ist es möglich auf Nahbesprechungsmikrofone zu verzichten. Spracherkennungssysteme, die auf Nahbesprechungsmikrofone verzichten, sind in vielen Anwendungen nützlich, wie zum Beispiel bei Humanoiden-Robotern, in Voice Control Systemen für Autos oder bei automatischen Transcriptionssystemen von Meetings. Ein Hauptproblem in der Spracherkennung auf Entfernung ist, dass mit zunehmendem Abstand zwischen Sprecher und Mikrofon, die Genauigkeit der Spracherkennung stark abnimmt. Aus diesem Grund ist es elementar die Störungen, nämlich Hintergrundgeräusche, Hall und Echo, aus den Mikrofonsignalen herauszurechnen. Durch den Einsatz von mehreren Mikrofonen ist eine räumliche Trennung des Nutzsignals von den Störungen möglich. Diese Methode wird als akustisches Beamformen bezeichnet. Konventionelle akustische Beamformer passen ihre Gewichte so an, dass die Varianz des Ausgangssignals minimiert wird, wobei das Signal in "Blickrichtung" die Bedingung der Verzerrungsfreiheit erfüllen muss. Die Varianz ist definiert als das quadratische Mittel des Ausgangssignals.Somit werden bei konventionellen Beamformingmethoden Second-Order Statistics (SOS) des Ausgangssignals verwendet. Konventionelle Beamformer können Störquellen effizient unterdrücken, aber leider auch das Nutzsignal. Diese unerwünschte Unterdrückung des Nutzsignals wird im Englischen signal cancellation genannt und es wurden bereits viele Algorithmen entwickelt um dies zu vermeiden. Keiner dieser Algorithmen, jedoch, funktioniert effektiv in verhallter Umgebung. Eine weitere Methode das Nutzsignal von den Störungen zu trennen, diesesmal jedoch ohne die geometrische Information zu nutzen, wird Blind Source Separation (BSS) [1] genannt. Hierbei wird eine Matrixmultiplikation mit dem Eingangssignal durchgeführt. Die Matrix muss so konstruiert werden, dass die Ausgangssignale statistisch unabhängig voneinander sind. Die statistische Unabhängigkeit wird mit der Theorie der Independent Component Analysis (ICA) gemessen [1]. Die ICA nimmt an, dass informationstragende Signale, wie z.B. Sprache, nicht gaußverteilt sind, wohingegen die Summe der Signale, z.B. das Hintergrundrauschen, gaußverteilt sind. Es gibt zwei gängige Arten um den Grad der Nichtgaußverteilung zu bestimmen, Kurtosis und Negentropy. Wie in dieser Arbeit beschrieben, werden hierbei höhere Momente als das zweite verwendet und somit werden diese Methoden als Higher-Order Statistics (HOS) bezeichnet. Obwohl Arai et al. zeigten, dass sich Beamforming und BSS ähnlich sind, werden HOS beim akustischen Beamforming bisher nicht verwendet [2] und beruhen weiterhin auf SOS. In der hier vorliegenden Dissertation werden neue Beamformingalgorithmen entwickelt und evaluiert, die auf HOS basieren. Die neuen Beamformingmethoden passen ihre Gewichte anhand eines der folgenden Kriterien an: • Minimum Mutual Information zweier Beamformer Ausgangssignale • Maximum Negentropy der Beamformer Ausgangssignale und • Maximum Kurtosis der Beamformer Ausgangssignale. Es wird anhand von Spracherkennerexperimenten (gemessen in Wortfehlerrate) gezeigt, dass die hier entwickelten Beamformingtechniken auch erfolgreich Störquellen in verhallten Umgebungen unterdrücken, was ein klarer Vorteil gegenüber den herkömmlichen Methoden ist

    Precise scatterer localization for ultrasound contrast imaging

    Get PDF
    This thesis is concerned with developing algorithms for the precise localization of ultrasound point scatterers with an eye to super-resolution ultrasound contrast imaging. In medical ultrasound, the conventional resolution is limited by diffraction and, in contrast to other sensing fields, point source imaging has not been extensively investigated. Here, two independent methods were proposed aiming to increase the lateral and the axial resolution respectively, by improving the localization accuracy of a single scatterer. The methods were examined with simulated and experimental data by using standard transmission protocols. Where a technique is applicable to imaging of more complicated structures than point sources, this was also examined. Further, a preliminary study was included with algorithm application to microbubbles that are currently used in contrast enhanced ultrasound. It was demonstrated that it is feasible to translate to ultrasonics, adaptive processes or techniques from optical imaging/astronomy. This way, it was possible to overcome the diffraction limit and achieve sub-wavelength localization. The accuracy gains are subject to many parameters but may reach up to two orders of magnitude, and are based exclusively on array signal processing. The latter is an important advantage since current attempts for super-resolution ultrasound are image-based which is generally undesired

    Mixture of beamformers for speech separation and extraction

    Get PDF
    In many audio applications, the signal of interest is corrupted by acoustic background noise, interference, and reverberation. The presence of these contaminations can significantly degrade the quality and intelligibility of the audio signal. This makes it important to develop signal processing methods that can separate the competing sources and extract a source of interest. The estimated signals may then be either directly listened to, transmitted, or further processed, giving rise to a wide range of applications such as hearing aids, noise-cancelling headphones, human-computer interaction, surveillance, and hands-free telephony. Many of the existing approaches to speech separation/extraction relied on beamforming techniques. These techniques approach the problem from a spatial point of view; a microphone array is used to form a spatial filter which can extract a signal from a specific direction and reduce the contamination of signals from other directions. However, when there are fewer microphones than sources (the underdetermined case), perfect attenuation of all interferers becomes impossible and only partial interference attenuation is possible. In this thesis, we present a framework which extends the use of beamforming techniques to underdetermined speech mixtures. We describe frequency domain non-linear mixture of beamformers that can extract a speech source from a known direction. Our approach models the data in each frequency bin via Gaussian mixture distributions, which can be learned using the expectation maximization algorithm. The model learning is performed using the observed mixture signals only, and no prior training is required. The signal estimator comprises of a set of minimum mean square error (MMSE), minimum variance distortionless response (MVDR), or minimum power distortionless response (MPDR) beamformers. In order to estimate the signal, all beamformers are concurrently applied to the observed signal, and the weighted sum of the beamformers’ outputs is used as the signal estimator, where the weights are the estimated posterior probabilities of the Gaussian mixture states. These weights are specific to each timefrequency point. The resulting non-linear beamformers do not need to know or estimate the number of sources, and can be applied to microphone arrays with two or more microphones with arbitrary array configuration. We test and evaluate the described methods on underdetermined speech mixtures. Experimental results for the non-linear beamformers in underdetermined mixtures with room reverberation confirm their capability to successfully extract speech sources

    Fundamental Frequency and Direction-of-Arrival Estimation for Multichannel Speech Enhancement

    Get PDF

    Partially adaptive array signal processing with application to airborne radar

    Get PDF

    Speech enhancement in binaural hearing protection devices

    Get PDF
    The capability of people to operate safely and effective under extreme noise conditions is dependent on their accesses to adequate voice communication while using hearing protection. This thesis develops speech enhancement algorithms that can be implemented in binaural hearing protection devices to improve communication and situation awareness in the workplace. The developed algorithms which emphasize low computational complexity, come with the capability to suppress noise while enhancing speech

    Frequency smoothed robust Capon beamformer applied to medical ultrasound imaging

    No full text
    Recently, adaptive array beamforming has been applied to medical ultrasound imaging and achieved promising performance improvement. However, the current robust Capon beamformer with spatial smoothing (RCB-SS) is implemented in the time domain, which does not fully utilise the large bandwidth of ultrasound signals and spatial smoothing reduces the effective aperture. In this dissertation, we propose a robust Capon beamformer with frequency smoothing (RCB-FS) and compare its performance with RCB-SS. To further reduce the speckle noise and utilise the large bandwidth of the signal, we combine RCB-FS and frequency com- pounding (FC) and propose a robust Capon beamformer with frequency smoothing combined with frequency compounding (RCB-FS-FC). The proposed RCB-FS method shows a narrower mainlobe width, lower sidelobes, better reconstruction at higher depths and less speckle than RCB-SS. FC is an e ective method to improve the contrast resolution and suppress speckle noise by combining sub-band images, at the expense of resolution. Compared to standard FC, the proposed RCB-FS-FC method has a better contrast resolution and speckle reduction and a significant improvement in resolution. RCB-FS offers a promising approach to find the optimal weights for the transducers in forming the sub-band images needed for frequency compounding

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link

    MICROPHONE ARRAY OPTIMIZATION IN IMMERSIVE ENVIRONMENTS

    Get PDF
    The complex relationship between array gain patterns and microphone distributions limits the application of traditional optimization algorithms on irregular arrays, which show enhanced beamforming performance for human speech capture in immersive environments. This work analyzes the relationship between irregular microphone geometries and spatial filtering performance with statistical methods. Novel geometry descriptors are developed to capture the properties of irregular microphone distributions showing their impact on array performance. General guidelines and optimization methods for regular and irregular array design are proposed in immersive (near-field) environments to obtain superior beamforming ability for speech applications. Optimization times are greatly reduced through the objective function rules using performance-based geometric descriptions of microphone distributions that circumvent direct array gain computations over the space of interest. In addition, probabilistic descriptions of acoustic scenes are introduced to incorporate various levels of prior knowledge for the source distribution. To verify the effectiveness of the proposed optimization methods, simulated gain patterns and real SNR results of the optimized arrays are compared to corresponding traditional regular arrays and arrays obtained from direct exhaustive searching methods. Results show large SNR enhancements for the optimized arrays over arbitrary randomly generated arrays and regular arrays, especially at low microphone densities. The rapid convergence and acceptable processing times observed during the experiments establish the feasibility of proposed optimization methods for array geometry design in immersive environments where rapid deployment is required with limited knowledge of the acoustic scene, such as in mobile platforms and audio surveillance applications
    corecore