421 research outputs found

    Speech denoising using nonnegative matrix factorization with priors

    Full text link

    Gaussian mixture gain priors for regularized nonnegative matrix factorization in single-channel source separation

    Get PDF
    We propose a new method to incorporate statistical priors on the solution of the nonnegative matrix factorization (NMF) for single-channel source separation (SCSS) applications. The Gaussian mixture model (GMM) is used as a log-normalized gain prior model for the NMF solution. The normalization makes the prior models energy independent. In NMF based SCSS, NMF is used to decompose the spectra of the observed mixed signal as a weighted linear combination of a set of trained basis vectors. In this work, the NMF decomposition weights are enforced to consider statistical prior information on the weight combination patterns that the trained basis vectors can jointly receive for each source in the observed mixed signal. The NMF solutions for the weights are encouraged to increase the loglikelihood with the trained gain prior GMMs while reducing the NMF reconstruction error at the same time

    Sparse and Non-Negative BSS for Noisy Data

    Full text link
    Non-negative blind source separation (BSS) has raised interest in various fields of research, as testified by the wide literature on the topic of non-negative matrix factorization (NMF). In this context, it is fundamental that the sources to be estimated present some diversity in order to be efficiently retrieved. Sparsity is known to enhance such contrast between the sources while producing very robust approaches, especially to noise. In this paper we introduce a new algorithm in order to tackle the blind separation of non-negative sparse sources from noisy measurements. We first show that sparsity and non-negativity constraints have to be carefully applied on the sought-after solution. In fact, improperly constrained solutions are unlikely to be stable and are therefore sub-optimal. The proposed algorithm, named nGMCA (non-negative Generalized Morphological Component Analysis), makes use of proximal calculus techniques to provide properly constrained solutions. The performance of nGMCA compared to other state-of-the-art algorithms is demonstrated by numerical experiments encompassing a wide variety of settings, with negligible parameter tuning. In particular, nGMCA is shown to provide robustness to noise and performs well on synthetic mixtures of real NMR spectra.Comment: 13 pages, 18 figures, to be published in IEEE Transactions on Signal Processin

    Single channel speech music separation using nonnegative matrix factorization and spectral masks

    Get PDF
    A single channel speech-music separation algorithm based on nonnegative matrix factorization (NMF) with spectral masks is proposed in this work. The proposed algorithm uses training data of speech and music signals with nonnegative matrix factorization followed by masking to separate the mixed signal. In the training stage, NMF uses the training data to train a set of basis vectors for each source. These bases are trained using NMF in the magnitude spectrum domain. After observing the mixed signal, NMF is used to decompose its magnitude spectra into a linear combination of the trained bases for both sources. The decomposition results are used to build a mask, which explains the contribution of each source in the mixed signal. Experimental results show that using masks after NMF improves the separation process even when calculating NMF with fewer iterations, which yields a faster separation process

    Single channel speech music separation using nonnegative matrix factorization with sliding windows and spectral masks

    Get PDF
    A single channel speech-music separation algorithm based on nonnegative matrix factorization (NMF) with sliding windows and spectral masks is proposed in this work. We train a set of basis vectors for each source signal using NMF in the magnitude spectral domain. Rather than forming the columns of the matrices to be decomposed by NMF of a single spectral frame, we build them with multiple spectral frames stacked in one column. After observing the mixed signal, NMF is used to decompose its magnitude spectra into a weighted linear combination of the trained basis vectors for both sources. An initial spectrogram estimate for each source is found, and a spectral mask is built using these initial estimates. This mask is used to weight the mixed signal spectrogram to find the contributions of each source signal in the mixed signal. The method is shown to perform better than the conventional NMF approach

    Spectro-temporal post-enhancement using MMSE estimation in NMF based single-channel source separation

    Get PDF
    We propose to use minimum mean squared error (MMSE) estimates to enhance the signals that are separated by nonnegative matrix factorization (NMF). In single channel source separation (SCSS), NMF is used to train a set of basis vectors for each source from their training spectrograms. Then NMF is used to decompose the mixed signal spectrogram as a weighted linear combination of the trained basis vectors from which estimates of each corresponding source can be obtained. In this work, we deal with the spectrogram of each separated signal as a 2D distorted signal that needs to be restored. A multiplicative distortion model is assumed where the logarithm of the true signal distribution is modeled with a Gaussian mixture model (GMM) and the distortion is modeled as having a log-normal distribution. The parameters of the GMM are learned from training data whereas the distortion parameters are learned online from each separated signal. The initial source estimates are improved and replaced with their MMSE estimates under this new probabilistic framework. The experimental results show that using the proposed MMSE estimation technique as a post enhancement after NMF improves the quality of the separated signal

    A Unified Framework for Sparse Non-Negative Least Squares using Multiplicative Updates and the Non-Negative Matrix Factorization Problem

    Full text link
    We study the sparse non-negative least squares (S-NNLS) problem. S-NNLS occurs naturally in a wide variety of applications where an unknown, non-negative quantity must be recovered from linear measurements. We present a unified framework for S-NNLS based on a rectified power exponential scale mixture prior on the sparse codes. We show that the proposed framework encompasses a large class of S-NNLS algorithms and provide a computationally efficient inference procedure based on multiplicative update rules. Such update rules are convenient for solving large sets of S-NNLS problems simultaneously, which is required in contexts like sparse non-negative matrix factorization (S-NMF). We provide theoretical justification for the proposed approach by showing that the local minima of the objective function being optimized are sparse and the S-NNLS algorithms presented are guaranteed to converge to a set of stationary points of the objective function. We then extend our framework to S-NMF, showing that our framework leads to many well known S-NMF algorithms under specific choices of prior and providing a guarantee that a popular subclass of the proposed algorithms converges to a set of stationary points of the objective function. Finally, we study the performance of the proposed approaches on synthetic and real-world data.Comment: To appear in Signal Processin
    • …
    corecore