2,554 research outputs found

    Compressive Signal Processing with Circulant Sensing Matrices

    Get PDF
    Compressive sensing achieves effective dimensionality reduction of signals, under a sparsity constraint, by means of a small number of random measurements acquired through a sensing matrix. In a signal processing system, the problem arises of processing the random projections directly, without first reconstructing the signal. In this paper, we show that circulant sensing matrices allow to perform a variety of classical signal processing tasks such as filtering, interpolation, registration, transforms, and so forth, directly in the compressed domain and in an exact fashion, \emph{i.e.}, without relying on estimators as proposed in the existing literature. The advantage of the techniques presented in this paper is to enable direct measurement-to-measurement transformations, without the need of costly recovery procedures

    Compressive Sensing for Spread Spectrum Receivers

    Get PDF
    With the advent of ubiquitous computing there are two design parameters of wireless communication devices that become very important power: efficiency and production cost. Compressive sensing enables the receiver in such devices to sample below the Shannon-Nyquist sampling rate, which may lead to a decrease in the two design parameters. This paper investigates the use of Compressive Sensing (CS) in a general Code Division Multiple Access (CDMA) receiver. We show that when using spread spectrum codes in the signal domain, the CS measurement matrix may be simplified. This measurement scheme, named Compressive Spread Spectrum (CSS), allows for a simple, effective receiver design. Furthermore, we numerically evaluate the proposed receiver in terms of bit error rate under different signal to noise ratio conditions and compare it with other receiver structures. These numerical experiments show that though the bit error rate performance is degraded by the subsampling in the CS-enabled receivers, this may be remedied by including quantization in the receiver model. We also study the computational complexity of the proposed receiver design under different sparsity and measurement ratios. Our work shows that it is possible to subsample a CDMA signal using CSS and that in one example the CSS receiver outperforms the classical receiver.Comment: 11 pages, 11 figures, 1 table, accepted for publication in IEEE Transactions on Wireless Communication

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1
    • …
    corecore