5,953 research outputs found

    Waveform Modeling and Generation Using Hierarchical Recurrent Neural Networks for Speech Bandwidth Extension

    Full text link
    This paper presents a waveform modeling and generation method using hierarchical recurrent neural networks (HRNN) for speech bandwidth extension (BWE). Different from conventional BWE methods which predict spectral parameters for reconstructing wideband speech waveforms, this BWE method models and predicts waveform samples directly without using vocoders. Inspired by SampleRNN which is an unconditional neural audio generator, the HRNN model represents the distribution of each wideband or high-frequency waveform sample conditioned on the input narrowband waveform samples using a neural network composed of long short-term memory (LSTM) layers and feed-forward (FF) layers. The LSTM layers form a hierarchical structure and each layer operates at a specific temporal resolution to efficiently capture long-span dependencies between temporal sequences. Furthermore, additional conditions, such as the bottleneck (BN) features derived from narrowband speech using a deep neural network (DNN)-based state classifier, are employed as auxiliary input to further improve the quality of generated wideband speech. The experimental results of comparing several waveform modeling methods show that the HRNN-based method can achieve better speech quality and run-time efficiency than the dilated convolutional neural network (DCNN)-based method and the plain sample-level recurrent neural network (SRNN)-based method. Our proposed method also outperforms the conventional vocoder-based BWE method using LSTM-RNNs in terms of the subjective quality of the reconstructed wideband speech.Comment: Accepted by IEEE Transactions on Audio, Speech and Language Processin

    Audio Super Resolution using Neural Networks

    Full text link
    We introduce a new audio processing technique that increases the sampling rate of signals such as speech or music using deep convolutional neural networks. Our model is trained on pairs of low and high-quality audio examples; at test-time, it predicts missing samples within a low-resolution signal in an interpolation process similar to image super-resolution. Our method is simple and does not involve specialized audio processing techniques; in our experiments, it outperforms baselines on standard speech and music benchmarks at upscaling ratios of 2x, 4x, and 6x. The method has practical applications in telephony, compression, and text-to-speech generation; it demonstrates the effectiveness of feed-forward convolutional architectures on an audio generation task.Comment: Presented at the 5th International Conference on Learning Representations (ICLR) 2017, Workshop Track, Toulon, Franc

    Beyond the Memory Wall: A Case for Memory-centric HPC System for Deep Learning

    Full text link
    As the models and the datasets to train deep learning (DL) models scale, system architects are faced with new challenges, one of which is the memory capacity bottleneck, where the limited physical memory inside the accelerator device constrains the algorithm that can be studied. We propose a memory-centric deep learning system that can transparently expand the memory capacity available to the accelerators while also providing fast inter-device communication for parallel training. Our proposal aggregates a pool of memory modules locally within the device-side interconnect, which are decoupled from the host interface and function as a vehicle for transparent memory capacity expansion. Compared to conventional systems, our proposal achieves an average 2.8x speedup on eight DL applications and increases the system-wide memory capacity to tens of TBs.Comment: Published as a conference paper at the 51st IEEE/ACM International Symposium on Microarchitecture (MICRO-51), 201

    A Hitchhiker's Guide On Distributed Training of Deep Neural Networks

    Full text link
    Deep learning has led to tremendous advancements in the field of Artificial Intelligence. One caveat however is the substantial amount of compute needed to train these deep learning models. Training a benchmark dataset like ImageNet on a single machine with a modern GPU can take upto a week, distributing training on multiple machines has been observed to drastically bring this time down. Recent work has brought down ImageNet training time to a time as low as 4 minutes by using a cluster of 2048 GPUs. This paper surveys the various algorithms and techniques used to distribute training and presents the current state of the art for a modern distributed training framework. More specifically, we explore the synchronous and asynchronous variants of distributed Stochastic Gradient Descent, various All Reduce gradient aggregation strategies and best practices for obtaining higher throughout and lower latency over a cluster such as mixed precision training, large batch training and gradient compression.Comment: 14 page

    GradiVeQ: Vector Quantization for Bandwidth-Efficient Gradient Aggregation in Distributed CNN Training

    Full text link
    Data parallelism can boost the training speed of convolutional neural networks (CNN), but could suffer from significant communication costs caused by gradient aggregation. To alleviate this problem, several scalar quantization techniques have been developed to compress the gradients. But these techniques could perform poorly when used together with decentralized aggregation protocols like ring all-reduce (RAR), mainly due to their inability to directly aggregate compressed gradients. In this paper, we empirically demonstrate the strong linear correlations between CNN gradients, and propose a gradient vector quantization technique, named GradiVeQ, to exploit these correlations through principal component analysis (PCA) for substantial gradient dimension reduction. GradiVeQ enables direct aggregation of compressed gradients, hence allows us to build a distributed learning system that parallelizes GradiVeQ gradient compression and RAR communications. Extensive experiments on popular CNNs demonstrate that applying GradiVeQ slashes the wall-clock gradient aggregation time of the original RAR by more than 5X without noticeable accuracy loss, and reduces the end-to-end training time by almost 50%. The results also show that GradiVeQ is compatible with scalar quantization techniques such as QSGD (Quantized SGD), and achieves a much higher speed-up gain under the same compression ratio.Comment: Accepted at NeurIPS 201

    Kafnets: kernel-based non-parametric activation functions for neural networks

    Full text link
    Neural networks are generally built by interleaving (adaptable) linear layers with (fixed) nonlinear activation functions. To increase their flexibility, several authors have proposed methods for adapting the activation functions themselves, endowing them with varying degrees of flexibility. None of these approaches, however, have gained wide acceptance in practice, and research in this topic remains open. In this paper, we introduce a novel family of flexible activation functions that are based on an inexpensive kernel expansion at every neuron. Leveraging over several properties of kernel-based models, we propose multiple variations for designing and initializing these kernel activation functions (KAFs), including a multidimensional scheme allowing to nonlinearly combine information from different paths in the network. The resulting KAFs can approximate any mapping defined over a subset of the real line, either convex or nonconvex. Furthermore, they are smooth over their entire domain, linear in their parameters, and they can be regularized using any known scheme, including the use of â„“1\ell_1 penalties to enforce sparseness. To the best of our knowledge, no other known model satisfies all these properties simultaneously. In addition, we provide a relatively complete overview on alternative techniques for adapting the activation functions, which is currently lacking in the literature. A large set of experiments validates our proposal.Comment: Preprint submitted to Neural Networks (Elsevier

    Deep Scattering Spectrum

    Full text link
    A scattering transform defines a locally translation invariant representation which is stable to time-warping deformations. It extends MFCC representations by computing modulation spectrum coefficients of multiple orders, through cascades of wavelet convolutions and modulus operators. Second-order scattering coefficients characterize transient phenomena such as attacks and amplitude modulation. A frequency transposition invariant representation is obtained by applying a scattering transform along log-frequency. State-the-of-art classification results are obtained for musical genre and phone classification on GTZAN and TIMIT databases, respectively

    Faster Asynchronous SGD

    Full text link
    Asynchronous distributed stochastic gradient descent methods have trouble converging because of stale gradients. A gradient update sent to a parameter server by a client is stale if the parameters used to calculate that gradient have since been updated on the server. Approaches have been proposed to circumvent this problem that quantify staleness in terms of the number of elapsed updates. In this work, we propose a novel method that quantifies staleness in terms of moving averages of gradient statistics. We show that this method outperforms previous methods with respect to convergence speed and scalability to many clients. We also discuss how an extension to this method can be used to dramatically reduce bandwidth costs in a distributed training context. In particular, our method allows reduction of total bandwidth usage by a factor of 5 with little impact on cost convergence. We also describe (and link to) a software library that we have used to simulate these algorithms deterministically on a single machine.Comment: 10 page

    2PFPCE: Two-Phase Filter Pruning Based on Conditional Entropy

    Full text link
    Deep Convolutional Neural Networks~(CNNs) offer remarkable performance of classifications and regressions in many high-dimensional problems and have been widely utilized in real-word cognitive applications. However, high computational cost of CNNs greatly hinder their deployment in resource-constrained applications, real-time systems and edge computing platforms. To overcome this challenge, we propose a novel filter-pruning framework, two-phase filter pruning based on conditional entropy, namely \textit{2PFPCE}, to compress the CNN models and reduce the inference time with marginal performance degradation. In our proposed method, we formulate filter pruning process as an optimization problem and propose a novel filter selection criteria measured by conditional entropy. Based on the assumption that the representation of neurons shall be evenly distributed, we also develop a maximum-entropy filter freeze technique that can reduce over fitting. Two filter pruning strategies -- global and layer-wise strategies, are compared. Our experiment result shows that combining these two strategies can achieve a higher neural network compression ratio than applying only one of them under the same accuracy drop threshold. Two-phase pruning, that is, combining both global and layer-wise strategies, achieves 10 X FLOPs reduction and 46% inference time reduction on VGG-16, with 2% accuracy drop.Comment: 8 pages, 6 figure

    Cyber Physical Systems: Prospects and Challenges

    Full text link
    Cyber physical systems CPSs embodies the conception as well as the implementation of the integration of the state-of-art technologies in sensing, communication, computing, and control. Such systems incorporate new trends such as cloud computing, mobile computing, mobile sensing, new modes of communications, wearables, etc. In this article we give an exposition of the architecture of a typical CPS system and the prospects of such systems in the development of the modern world. We illustrate the three major challenges faced by a CPS system: the need for rigorous numerical computation, the limitation of the current wireless communication bandwidth, and the computation/storage limitation by mobility and energy consumption. We address each one of these exposing the current techniques devised to solve each one of them
    • …
    corecore