1,110 research outputs found

    Combining Statistical Parameteric Speech Synthesis and Unit-Selection for Automatic Voice Cloning

    Get PDF
    The ability to use the recorded audio of a subject's voice to produce an open-domain synthesis system has generated much interest both in academic research and in commercial speech technology. The ability to produce synthetic versions of a subjects voice has potential commercial applications, such as virtual celebrity actors, or potential clinical applications, such as offering a synthetic replacement voice in the case of a laryngectomy. Recent developments in HMM-based speech synthesis have shown it is possible to produce synthetic voices from quite small amounts of speech data. However, mimicking the depth and variation of a speaker's prosody as well as synthesising natural voice quality is still a challenging research problem. In contrast, unit-selection systems have shown it is possible to strongly retain the character of the voice but only with sufficient original source material. Often this runs into hours and may require significant manual checking and labelling. In this paper we will present two state of the art systems, an HMM based system HTS-2007, developed by CSTR and Nagoya Institute Technology, and a commercial unit-selection system CereVoice, developed by Cereproc. Both systems have been used to mimic the voice of George W. Bush (43rd president of the United States) using freely available audio from the web. In addition we will present a hybrid system which combines both technologies. We demonstrate examples of synthetic voices created from 10, 40 and 210 minutes of randomly selected speech. We will then discuss the underlying problems associated with voice cloning using found audio, and the scalability of our solution

    AWESOME: GPU Memory-constrained Long Document Summarization using Memory Mechanism and Global Salient Content

    Full text link
    Long document summarization systems are critical for domains with lengthy and jargonladen text, yet they present significant challenges to researchers and developers with limited computing resources. Existing solutions mainly focus on efficient attentions or divide-and-conquer strategies. The former reduces theoretical time complexity, but is still memory-heavy. The latter methods sacrifice global context, leading to uninformative and incoherent summaries. This work aims to leverage the memory-efficient nature of divide-and-conquer methods while preserving global context. Concretely, our framework AWESOME uses two novel mechanisms: (1) External memory mechanisms track previously encoded document segments and their corresponding summaries, to enhance global document understanding and summary coherence. (2) Global salient content is further identified beforehand to augment each document segment to support its summarization. Extensive experiments on diverse genres of text, including government reports, transcripts, scientific papers, and novels, show that AWESOME produces summaries with improved informativeness, faithfulness, and coherence than competitive baselines on longer documents, while having a similar or smaller GPU memory footprint

    The listening talker: A review of human and algorithmic context-induced modifications of speech

    Get PDF
    International audienceSpeech output technology is finding widespread application, including in scenarios where intelligibility might be compromised - at least for some listeners - by adverse conditions. Unlike most current algorithms, talkers continually adapt their speech patterns as a response to the immediate context of spoken communication, where the type of interlocutor and the environment are the dominant situational factors influencing speech production. Observations of talker behaviour can motivate the design of more robust speech output algorithms. Starting with a listener-oriented categorisation of possible goals for speech modification, this review article summarises the extensive set of behavioural findings related to human speech modification, identifies which factors appear to be beneficial, and goes on to examine previous computational attempts to improve intelligibility in noise. The review concludes by tabulating 46 speech modifications, many of which have yet to be perceptually or algorithmically evaluated. Consequently, the review provides a roadmap for future work in improving the robustness of speech output
    corecore