714 research outputs found

    Character-Based Handwritten Text Transcription with Attention Networks

    Full text link
    The paper approaches the task of handwritten text recognition (HTR) with attentional encoder-decoder networks trained on sequences of characters, rather than words. We experiment on lines of text from popular handwriting datasets and compare different activation functions for the attention mechanism used for aligning image pixels and target characters. We find that softmax attention focuses heavily on individual characters, while sigmoid attention focuses on multiple characters at each step of the decoding. When the sequence alignment is one-to-one, softmax attention is able to learn a more precise alignment at each step of the decoding, whereas the alignment generated by sigmoid attention is much less precise. When a linear function is used to obtain attention weights, the model predicts a character by looking at the entire sequence of characters and performs poorly because it lacks a precise alignment between the source and target. Future research may explore HTR in natural scene images, since the model is capable of transcribing handwritten text without the need for producing segmentations or bounding boxes of text in images

    Deep Learning on Operational Facility Data Related to Large-Scale Distributed Area Scientific Workflows

    Full text link
    Distributed computing platforms provide a robust mechanism to perform large-scale computations by splitting the task and data among multiple locations, possibly located thousands of miles apart geographically. Although such distribution of resources can lead to benefits, it also comes with its associated problems such as rampant duplication of file transfers increasing congestion, long job completion times, unexpected site crashing, suboptimal data transfer rates, unpredictable reliability in a time range, and suboptimal usage of storage elements. In addition, each sub-system becomes a potential failure node that can trigger system wide disruptions. In this vision paper, we outline our approach to leveraging Deep Learning algorithms to discover solutions to unique problems that arise in a system with computational infrastructure that is spread over a wide area. The presented vision, motivated by a real scientific use case from Belle II experiments, is to develop multilayer neural networks to tackle forecasting, anomaly detection and optimization challenges in a complex and distributed data movement environment. Through this vision based on Deep Learning principles, we aim to achieve reduced congestion events, faster file transfer rates, and enhanced site reliability

    Brain Intelligence: Go Beyond Artificial Intelligence

    Full text link
    Artificial intelligence (AI) is an important technology that supports daily social life and economic activities. It contributes greatly to the sustainable growth of Japan's economy and solves various social problems. In recent years, AI has attracted attention as a key for growth in developed countries such as Europe and the United States and developing countries such as China and India. The attention has been focused mainly on developing new artificial intelligence information communication technology (ICT) and robot technology (RT). Although recently developed AI technology certainly excels in extracting certain patterns, there are many limitations. Most ICT models are overly dependent on big data, lack a self-idea function, and are complicated. In this paper, rather than merely developing next-generation artificial intelligence technology, we aim to develop a new concept of general-purpose intelligence cognition technology called Beyond AI. Specifically, we plan to develop an intelligent learning model called Brain Intelligence (BI) that generates new ideas about events without having experienced them by using artificial life with an imagine function. We will also conduct demonstrations of the developed BI intelligence learning model on automatic driving, precision medical care, and industrial robots.Comment: 15 pages, Mobile Networks and Applications, 201

    Unsupervised Domain Adaptation for Robust Speech Recognition via Variational Autoencoder-Based Data Augmentation

    Full text link
    Domain mismatch between training and testing can lead to significant degradation in performance in many machine learning scenarios. Unfortunately, this is not a rare situation for automatic speech recognition deployments in real-world applications. Research on robust speech recognition can be regarded as trying to overcome this domain mismatch issue. In this paper, we address the unsupervised domain adaptation problem for robust speech recognition, where both source and target domain speech are presented, but word transcripts are only available for the source domain speech. We present novel augmentation-based methods that transform speech in a way that does not change the transcripts. Specifically, we first train a variational autoencoder on both source and target domain data (without supervision) to learn a latent representation of speech. We then transform nuisance attributes of speech that are irrelevant to recognition by modifying the latent representations, in order to augment labeled training data with additional data whose distribution is more similar to the target domain. The proposed method is evaluated on the CHiME-4 dataset and reduces the absolute word error rate (WER) by as much as 35% compared to the non-adapted baseline.Comment: Accepted to IEEE ASRU 201

    Novel Cascaded Gaussian Mixture Model-Deep Neural Network Classifier for Speaker Identification in Emotional Talking Environments

    Full text link
    This research is an effort to present an effective approach to enhance text-independent speaker identification performance in emotional talking environments based on novel classifier called cascaded Gaussian Mixture Model-Deep Neural Network (GMM-DNN). Our current work focuses on proposing, implementing and evaluating a new approach for speaker identification in emotional talking environments based on cascaded Gaussian Mixture Model-Deep Neural Network as a classifier. The results point out that the cascaded GMM-DNN classifier improves speaker identification performance at various emotions using two distinct speech databases: Emirati speech database (Arabic United Arab Emirates dataset) and Speech Under Simulated and Actual Stress (SUSAS) English dataset. The proposed classifier outperforms classical classifiers such as Multilayer Perceptron (MLP) and Support Vector Machine (SVM) in each dataset. Speaker identification performance that has been attained based on the cascaded GMM-DNN is similar to that acquired from subjective assessment by human listeners.Comment: 15 page

    Unsupervised speech representation learning using WaveNet autoencoders

    Full text link
    We consider the task of unsupervised extraction of meaningful latent representations of speech by applying autoencoding neural networks to speech waveforms. The goal is to learn a representation able to capture high level semantic content from the signal, e.g.\ phoneme identities, while being invariant to confounding low level details in the signal such as the underlying pitch contour or background noise. Since the learned representation is tuned to contain only phonetic content, we resort to using a high capacity WaveNet decoder to infer information discarded by the encoder from previous samples. Moreover, the behavior of autoencoder models depends on the kind of constraint that is applied to the latent representation. We compare three variants: a simple dimensionality reduction bottleneck, a Gaussian Variational Autoencoder (VAE), and a discrete Vector Quantized VAE (VQ-VAE). We analyze the quality of learned representations in terms of speaker independence, the ability to predict phonetic content, and the ability to accurately reconstruct individual spectrogram frames. Moreover, for discrete encodings extracted using the VQ-VAE, we measure the ease of mapping them to phonemes. We introduce a regularization scheme that forces the representations to focus on the phonetic content of the utterance and report performance comparable with the top entries in the ZeroSpeech 2017 unsupervised acoustic unit discovery task.Comment: Accepted to IEEE TASLP, final version available at http://dx.doi.org/10.1109/TASLP.2019.293886

    End-to-end Continuous Speech Recognition using Attention-based Recurrent NN: First Results

    Full text link
    We replace the Hidden Markov Model (HMM) which is traditionally used in in continuous speech recognition with a bi-directional recurrent neural network encoder coupled to a recurrent neural network decoder that directly emits a stream of phonemes. The alignment between the input and output sequences is established using an attention mechanism: the decoder emits each symbol based on a context created with a subset of input symbols elected by the attention mechanism. We report initial results demonstrating that this new approach achieves phoneme error rates that are comparable to the state-of-the-art HMM-based decoders, on the TIMIT dataset.Comment: As accepted to: Deep Learning and Representation Learning Workshop, NIPS 201

    Modular End-to-end Automatic Speech Recognition Framework for Acoustic-to-word Model

    Full text link
    End-to-end (E2E) systems have played a more and more important role in automatic speech recognition (ASR) and achieved great performance. However, E2E systems recognize output word sequences directly with the input acoustic feature, which can only be trained on limited acoustic data. The extra text data is widely used to improve the results of traditional artificial neural network-hidden Markov model (ANN-HMM) hybrid systems. The involving of extra text data to standard E2E ASR systems may break the E2E property during decoding. In this paper, a novel modular E2E ASR system is proposed. The modular E2E ASR system consists of two parts: an acoustic-to-phoneme (A2P) model and a phoneme-to-word (P2W) model. The A2P model is trained on acoustic data, while extra data including large scale text data can be used to train the P2W model. This additional data enables the modular E2E ASR system to model not only the acoustic part but also the language part. During the decoding phase, the two models will be integrated and act as a standard acoustic-to-word (A2W) model. In other words, the proposed modular E2E ASR system can be easily trained with extra text data and decoded in the same way as a standard E2E ASR system. Experimental results on the Switchboard corpus show that the modular E2E model achieves better word error rate (WER) than standard A2W models.Comment: Accepted by IEEE TASL

    Multilingual Language Processing From Bytes

    Full text link
    We describe an LSTM-based model which we call Byte-to-Span (BTS) that reads text as bytes and outputs span annotations of the form [start, length, label] where start positions, lengths, and labels are separate entries in our vocabulary. Because we operate directly on unicode bytes rather than language-specific words or characters, we can analyze text in many languages with a single model. Due to the small vocabulary size, these multilingual models are very compact, but produce results similar to or better than the state-of- the-art in Part-of-Speech tagging and Named Entity Recognition that use only the provided training datasets (no external data sources). Our models are learning "from scratch" in that they do not rely on any elements of the standard pipeline in Natural Language Processing (including tokenization), and thus can run in standalone fashion on raw text

    Combining Static and Dynamic Features for Multivariate Sequence Classification

    Full text link
    Model precision in a classification task is highly dependent on the feature space that is used to train the model. Moreover, whether the features are sequential or static will dictate which classification method can be applied as most of the machine learning algorithms are designed to deal with either one or another type of data. In real-life scenarios, however, it is often the case that both static and dynamic features are present, or can be extracted from the data. In this work, we demonstrate how generative models such as Hidden Markov Models (HMM) and Long Short-Term Memory (LSTM) artificial neural networks can be used to extract temporal information from the dynamic data. We explore how the extracted information can be combined with the static features in order to improve the classification performance. We evaluate the existing techniques and suggest a hybrid approach, which outperforms other methods on several public datasets.Comment: Presented at IEEE DSAA 201
    • …
    corecore