104,123 research outputs found

    Acoustic Identification of Flat Spots On Wheels Using Different Machine Learning Techniques

    Get PDF
    BMBF, 01IS18049B, ALICE III - Autonomes Lernen in komplexen Umgebungen 3 (Autonomous Learning in Complex Environments 3

    Porting concepts from DNNs back to GMMs

    Get PDF
    Deep neural networks (DNNs) have been shown to outperform Gaussian Mixture Models (GMM) on a variety of speech recognition benchmarks. In this paper we analyze the differences between the DNN and GMM modeling techniques and port the best ideas from the DNN-based modeling to a GMM-based system. By going both deep (multiple layers) and wide (multiple parallel sub-models) and by sharing model parameters, we are able to close the gap between the two modeling techniques on the TIMIT database. Since the 'deep' GMMs retain the maximum-likelihood trained Gaussians as first layer, advanced techniques such as speaker adaptation and model-based noise robustness can be readily incorporated. Regardless of their similarities, the DNNs and the deep GMMs still show a sufficient amount of complementarity to allow effective system combination

    Direct Acoustics-to-Word Models for English Conversational Speech Recognition

    Full text link
    Recent work on end-to-end automatic speech recognition (ASR) has shown that the connectionist temporal classification (CTC) loss can be used to convert acoustics to phone or character sequences. Such systems are used with a dictionary and separately-trained Language Model (LM) to produce word sequences. However, they are not truly end-to-end in the sense of mapping acoustics directly to words without an intermediate phone representation. In this paper, we present the first results employing direct acoustics-to-word CTC models on two well-known public benchmark tasks: Switchboard and CallHome. These models do not require an LM or even a decoder at run-time and hence recognize speech with minimal complexity. However, due to the large number of word output units, CTC word models require orders of magnitude more data to train reliably compared to traditional systems. We present some techniques to mitigate this issue. Our CTC word model achieves a word error rate of 13.0%/18.8% on the Hub5-2000 Switchboard/CallHome test sets without any LM or decoder compared with 9.6%/16.0% for phone-based CTC with a 4-gram LM. We also present rescoring results on CTC word model lattices to quantify the performance benefits of a LM, and contrast the performance of word and phone CTC models.Comment: Submitted to Interspeech-201

    Context-Dependent Acoustic Modeling without Explicit Phone Clustering

    Full text link
    Phoneme-based acoustic modeling of large vocabulary automatic speech recognition takes advantage of phoneme context. The large number of context-dependent (CD) phonemes and their highly varying statistics require tying or smoothing to enable robust training. Usually, Classification and Regression Trees are used for phonetic clustering, which is standard in Hidden Markov Model (HMM)-based systems. However, this solution introduces a secondary training objective and does not allow for end-to-end training. In this work, we address a direct phonetic context modeling for the hybrid Deep Neural Network (DNN)/HMM, that does not build on any phone clustering algorithm for the determination of the HMM state inventory. By performing different decompositions of the joint probability of the center phoneme state and its left and right contexts, we obtain a factorized network consisting of different components, trained jointly. Moreover, the representation of the phonetic context for the network relies on phoneme embeddings. The recognition accuracy of our proposed models on the Switchboard task is comparable and outperforms slightly the hybrid model using the standard state-tying decision trees.Comment: Submitted to Interspeech 202

    Palate-referenced Articulatory Features for Acoustic-to-Articulator Inversion

    Get PDF
    The selection of effective articulatory features is an important component of tasks such as acoustic-to-articulator inversion and articulatory synthesis. Although it is common to use direct articulatory sensor measurements as feature variables, this approach fails to incorporate important physiological information such as palate height and shape and thus is not as representative of vocal tract cross section as desired. We introduce a set of articulator feature variables that are palate referenced and normalized with respect to the articulatory working space in order to improve the quality of the vocal tract representation. These features include normalized horizontal positions plus the normalized palatal height of two midsagittal and one lateral tongue sensor, as well as normalized lip separation and lip protrusion. The quality of the feature representation is evaluated subjectively by comparing the variances and vowel separation in the working space and quantitatively through measurement of acoustic-to-articulator inversion error. Results indicate that the palate-referenced features have reduced variance and increased separation between vowels spaces and substantially lower inversion error than direct sensor measures

    Speaker Normalization Using Cortical Strip Maps: A Neural Model for Steady State Vowel Identification

    Full text link
    Auditory signals of speech are speaker-dependent, but representations of language meaning are speaker-independent. Such a transformation enables speech to be understood from different speakers. A neural model is presented that performs speaker normalization to generate a pitchindependent representation of speech sounds, while also preserving information about speaker identity. This speaker-invariant representation is categorized into unitized speech items, which input to sequential working memories whose distributed patterns can be categorized, or chunked, into syllable and word representations. The proposed model fits into an emerging model of auditory streaming and speech categorization. The auditory streaming and speaker normalization parts of the model both use multiple strip representations and asymmetric competitive circuits, thereby suggesting that these two circuits arose from similar neural designs. The normalized speech items are rapidly categorized and stably remembered by Adaptive Resonance Theory circuits. Simulations use synthesized steady-state vowels from the Peterson and Barney [J. Acoust. Soc. Am. 24, 175-184 (1952)] vowel database and achieve accuracy rates similar to those achieved by human listeners. These results are compared to behavioral data and other speaker normalization models.National Science Foundation (SBE-0354378); Office of Naval Research (N00014-01-1-0624
    corecore