1,152 research outputs found

    Kepstrum approach to real-time speech-enhancement methods using two microphones

    Get PDF
    The objective of this paper is to provide improved real-time noise canceling performance by using kepstrum analysis. The method is applied to typically existing two-microphone approaches using modified adaptive noise canceling and speech beamforming methods. It will be shown that the kepstrum approach gives an improved effect for optimally enhancing a speech signal in the primary input when it is applied to the front-end of a beamformer or speech directivity system. As a result, enhanced performance in the form of an improved noise reduction ratio with highly reduced adaptive filter size can be achieved. Experiments according to 20cm broadside microphone configuration are implemented in real-time in a real environment, which is a typical indoor office with a moderate reverberation condition

    Blind Single Channel Deconvolution using Nonstationary Signal Processing

    Get PDF

    A Novel Robust Mel-Energy Based Voice Activity Detector for Nonstationary Noise and Its Application for Speech Waveform Compression

    Get PDF
    The voice activity detection (VAD) is crucial in all kinds of speech applications. However, almost all existing VAD algorithms suffer from the nonstationarity of both speech and noise. To combat this difficulty, we propose a new voice activity detector, which is based on the Mel-energy features and an adaptive threshold related to the signal-to-noise ratio (SNR) estimates. In this thesis, we first justify the robustness of the Bayes classifier using the Mel-energy features over that using the Fourier spectral features in various noise environments. Then, we design an algorithm using the dynamic Mel-energy estimator and the adaptive threshold which depends on the SNR estimates. In addition, a realignment scheme is incorporated to correct the sparse-and-spurious noise estimates. Numerous simulations are carried out to evaluate the performance of our proposed VAD method and the comparisons are made with a couple existing representative schemes, namely the VAD using the likelihood ratio test with Fourier spectral energy features and that based on the enhanced time-frequency parameters. Three types of noise, namely white noise (stationary), babble noise (nonstationary) and vehicular noise (nonstationary) were artificially added by the computer for our experiments. As a result, our proposed VAD algorithm significantly outperforms other existing methods as illustrated by the corresponding receiver operating curves (ROCs). Finally, we demonstrate one of the major applications, namely speech waveform compression, associated with our new robust VAD scheme and quantify the effectiveness in terms of compression efficiency

    Block-Online Multi-Channel Speech Enhancement Using DNN-Supported Relative Transfer Function Estimates

    Get PDF
    This work addresses the problem of block-online processing for multi-channel speech enhancement. Such processing is vital in scenarios with moving speakers and/or when very short utterances are processed, e.g., in voice assistant scenarios. We consider several variants of a system that performs beamforming supported by DNN-based voice activity detection (VAD) followed by post-filtering. The speaker is targeted through estimating relative transfer functions between microphones. Each block of the input signals is processed independently in order to make the method applicable in highly dynamic environments. Owing to the short length of the processed block, the statistics required by the beamformer are estimated less precisely. The influence of this inaccuracy is studied and compared to the processing regime when recordings are treated as one block (batch processing). The experimental evaluation of the proposed method is performed on large datasets of CHiME-4 and on another dataset featuring moving target speaker. The experiments are evaluated in terms of objective and perceptual criteria (such as signal-to-interference ratio (SIR) or perceptual evaluation of speech quality (PESQ), respectively). Moreover, word error rate (WER) achieved by a baseline automatic speech recognition system is evaluated, for which the enhancement method serves as a front-end solution. The results indicate that the proposed method is robust with respect to short length of the processed block. Significant improvements in terms of the criteria and WER are observed even for the block length of 250 ms.Comment: 10 pages, 8 figures, 4 tables. Modified version of the article accepted for publication in IET Signal Processing journal. Original results unchanged, additional experiments presented, refined discussion and conclusion
    corecore