2,808 research outputs found

    STFT-Domain Neural Speech Enhancement with Very Low Algorithmic Latency

    Full text link
    Deep learning based speech enhancement in the short-term Fourier transform (STFT) domain typically uses a large window length such as 32 ms. A larger window contains more samples and the frequency resolution can be higher for potentially better enhancement. This however incurs an algorithmic latency of 32 ms in an online setup, because the overlap-add algorithm used in the inverse STFT (iSTFT) is also performed based on the same 32 ms window size. To reduce this inherent latency, we adapt a conventional dual window size approach, where a regular input window size is used for STFT but a shorter output window is used for the overlap-add in the iSTFT, for STFT-domain deep learning based frame-online speech enhancement. Based on this STFT and iSTFT configuration, we employ single- or multi-microphone complex spectral mapping for frame-online enhancement, where a deep neural network (DNN) is trained to predict the real and imaginary (RI) components of target speech from the mixture RI components. In addition, we use the RI components predicted by the DNN to conduct frame-online beamforming, the results of which are then used as extra features for a second DNN to perform frame-online post-filtering. The frequency-domain beamforming in between the two DNNs can be easily integrated with complex spectral mapping and is designed to not incur any algorithmic latency. Additionally, we propose a future-frame prediction technique to further reduce the algorithmic latency. Evaluation results on a noisy-reverberant speech enhancement task demonstrate the effectiveness of the proposed algorithms. Compared with Conv-TasNet, our STFT-domain system can achieve better enhancement performance for a comparable amount of computation, or comparable performance with less computation, maintaining strong performance at an algorithmic latency as low as 2 ms.Comment: in submissio

    Multichannel Online Dereverberation based on Spectral Magnitude Inverse Filtering

    Full text link
    This paper addresses the problem of multichannel online dereverberation. The proposed method is carried out in the short-time Fourier transform (STFT) domain, and for each frequency band independently. In the STFT domain, the time-domain room impulse response is approximately represented by the convolutive transfer function (CTF). The multichannel CTFs are adaptively identified based on the cross-relation method, and using the recursive least square criterion. Instead of the complex-valued CTF convolution model, we use a nonnegative convolution model between the STFT magnitude of the source signal and the CTF magnitude, which is just a coarse approximation of the former model, but is shown to be more robust against the CTF perturbations. Based on this nonnegative model, we propose an online STFT magnitude inverse filtering method. The inverse filters of the CTF magnitude are formulated based on the multiple-input/output inverse theorem (MINT), and adaptively estimated based on the gradient descent criterion. Finally, the inverse filtering is applied to the STFT magnitude of the microphone signals, obtaining an estimate of the STFT magnitude of the source signal. Experiments regarding both speech enhancement and automatic speech recognition are conducted, which demonstrate that the proposed method can effectively suppress reverberation, even for the difficult case of a moving speaker.Comment: Paper submitted to IEEE/ACM Transactions on Audio, Speech and Language Processing. IEEE Signal Processing Letters, 201
    • …
    corecore