1,303 research outputs found

    Deep Learning for Environmentally Robust Speech Recognition: An Overview of Recent Developments

    Get PDF
    Eliminating the negative effect of non-stationary environmental noise is a long-standing research topic for automatic speech recognition that stills remains an important challenge. Data-driven supervised approaches, including ones based on deep neural networks, have recently emerged as potential alternatives to traditional unsupervised approaches and with sufficient training, can alleviate the shortcomings of the unsupervised methods in various real-life acoustic environments. In this light, we review recently developed, representative deep learning approaches for tackling non-stationary additive and convolutional degradation of speech with the aim of providing guidelines for those involved in the development of environmentally robust speech recognition systems. We separately discuss single- and multi-channel techniques developed for the front-end and back-end of speech recognition systems, as well as joint front-end and back-end training frameworks

    Transfer Learning for Speech and Language Processing

    Full text link
    Transfer learning is a vital technique that generalizes models trained for one setting or task to other settings or tasks. For example in speech recognition, an acoustic model trained for one language can be used to recognize speech in another language, with little or no re-training data. Transfer learning is closely related to multi-task learning (cross-lingual vs. multilingual), and is traditionally studied in the name of `model adaptation'. Recent advance in deep learning shows that transfer learning becomes much easier and more effective with high-level abstract features learned by deep models, and the `transfer' can be conducted not only between data distributions and data types, but also between model structures (e.g., shallow nets and deep nets) or even model types (e.g., Bayesian models and neural models). This review paper summarizes some recent prominent research towards this direction, particularly for speech and language processing. We also report some results from our group and highlight the potential of this very interesting research field.Comment: 13 pages, APSIPA 201

    Survey of deep representation learning for speech emotion recognition

    Get PDF
    Traditionally, speech emotion recognition (SER) research has relied on manually handcrafted acoustic features using feature engineering. However, the design of handcrafted features for complex SER tasks requires significant manual eort, which impedes generalisability and slows the pace of innovation. This has motivated the adoption of representation learning techniques that can automatically learn an intermediate representation of the input signal without any manual feature engineering. Representation learning has led to improved SER performance and enabled rapid innovation. Its effectiveness has further increased with advances in deep learning (DL), which has facilitated \textit{deep representation learning} where hierarchical representations are automatically learned in a data-driven manner. This paper presents the first comprehensive survey on the important topic of deep representation learning for SER. We highlight various techniques, related challenges and identify important future areas of research. Our survey bridges the gap in the literature since existing surveys either focus on SER with hand-engineered features or representation learning in the general setting without focusing on SER

    The Verbal and Non Verbal Signals of Depression -- Combining Acoustics, Text and Visuals for Estimating Depression Level

    Full text link
    Depression is a serious medical condition that is suffered by a large number of people around the world. It significantly affects the way one feels, causing a persistent lowering of mood. In this paper, we propose a novel attention-based deep neural network which facilitates the fusion of various modalities. We use this network to regress the depression level. Acoustic, text and visual modalities have been used to train our proposed network. Various experiments have been carried out on the benchmark dataset, namely, Distress Analysis Interview Corpus - a Wizard of Oz (DAIC-WOZ). From the results, we empirically justify that the fusion of all three modalities helps in giving the most accurate estimation of depression level. Our proposed approach outperforms the state-of-the-art by 7.17% on root mean squared error (RMSE) and 8.08% on mean absolute error (MAE).Comment: 10 pages including references, 2 figure
    corecore