303 research outputs found

    A Speech Quality Classifier based on Tree-CNN Algorithm that Considers Network Degradations

    Get PDF
    Many factors can affect the users’ quality of experience (QoE) in speech communication services. The impairment factors appear due to physical phenomena that occur in the transmission channel of wireless and wired networks. The monitoring of users’ QoE is important for service providers. In this context, a non-intrusive speech quality classifier based on the Tree Convolutional Neural Network (Tree-CNN) is proposed. The Tree-CNN is an adaptive network structure composed of hierarchical CNNs models, and its main advantage is to decrease the training time that is very relevant on speech quality assessment methods. In the training phase of the proposed classifier model, impaired speech signals caused by wired and wireless network degradation are used as input. Also, in the network scenario, different modulation schemes and channel degradation intensities, such as packet loss rate, signal-to-noise ratio, and maximum Doppler shift frequencies are implemented. Experimental results demonstrated that the proposed model achieves significant reduction of training time, reaching 25% of reduction in relation to another implementation based on DRBM. The accuracy reached by the Tree-CNN model is almost 95% for each quality class. Performance assessment results show that the proposed classifier based on the Tree-CNN overcomes both the current standardized algorithm described in ITU-T Rec. P.563 and the speech quality assessment method called ViSQOL

    Expressive movement generation with machine learning

    Get PDF
    Movement is an essential aspect of our lives. Not only do we move to interact with our physical environment, but we also express ourselves and communicate with others through our movements. In an increasingly computerized world where various technologies and devices surround us, our movements are essential parts of our interaction with and consumption of computational devices and artifacts. In this context, incorporating an understanding of our movements within the design of the technologies surrounding us can significantly improve our daily experiences. This need has given rise to the field of movement computing – developing computational models of movement that can perceive, manipulate, and generate movements. In this thesis, we contribute to the field of movement computing by building machine-learning-based solutions for automatic movement generation. In particular, we focus on using machine learning techniques and motion capture data to create controllable, generative movement models. We also contribute to the field by creating datasets, tools, and libraries that we have developed during our research. We start our research by reviewing the works on building automatic movement generation systems using machine learning techniques and motion capture data. Our review covers background topics such as high-level movement characterization, training data, features representation, machine learning models, and evaluation methods. Building on our literature review, we present WalkNet, an interactive agent walking movement controller based on neural networks. The expressivity of virtual, animated agents plays an essential role in their believability. Therefore, WalkNet integrates controlling the expressive qualities of movement with the goal-oriented behaviour of an animated virtual agent. It allows us to control the generation based on the valence and arousal levels of affect, the movement’s walking direction, and the mover’s movement signature in real-time. Following WalkNet, we look at controlling movement generation using more complex stimuli such as music represented by audio signals (i.e., non-symbolic music). Music-driven dance generation involves a highly non-linear mapping between temporally dense stimuli (i.e., the audio signal) and movements, which renders a more challenging modelling movement problem. To this end, we present GrooveNet, a real-time machine learning model for music-driven dance generation

    Theory and applications of artificial neural networks

    Get PDF
    In this thesis some fundamental theoretical problems about artificial neural networks and their application in communication and control systems are discussed. We consider the convergence properties of the Back-Propagation algorithm which is widely used for training of artificial neural networks, and two stepsize variation techniques are proposed to accelerate convergence. Simulation results demonstrate significant improvement over conventional Back-Propagation algorithms. We also discuss the relationship between generalization performance of artificial neural networks and their structure and representation strategy. It is shown that the structure of the network which represent a priori knowledge of the environment has a strong influence on generalization performance. A Theorem about the number of hidden units and the capacity of self-association MLP (Multi-Layer Perceptron) type network is also given in the thesis. In the application part of the thesis, we discuss the feasibility of using artificial neural networks for nonlinear system identification. Some advantages and disadvantages of this approach are analyzed. The thesis continues with a study of artificial neural networks applied to communication channel equalization and the problem of call access control in broadband ATM (Asynchronous Transfer Mode) communication networks. A final chapter provides overall conclusions and suggestions for further work
    • …
    corecore