2,928 research outputs found

    Neural Modeling and Imaging of the Cortical Interactions Underlying Syllable Production

    Full text link
    This paper describes a neural model of speech acquisition and production that accounts for a wide range of acoustic, kinematic, and neuroimaging data concerning the control of speech movements. The model is a neural network whose components correspond to regions of the cerebral cortex and cerebellum, including premotor, motor, auditory, and somatosensory cortical areas. Computer simulations of the model verify its ability to account for compensation to lip and jaw perturbations during speech. Specific anatomical locations of the model's components are estimated, and these estimates are used to simulate fMRI experiments of simple syllable production with and without jaw perturbations.National Institute on Deafness and Other Communication Disorders (R01 DC02852, RO1 DC01925

    Direct Speech Reconstruction From Articulatory Sensor Data by Machine Learning

    Get PDF
    This paper describes a technique that generates speech acoustics from articulator movements. Our motivation is to help people who can no longer speak following laryngectomy, a procedure that is carried out tens of thousands of times per year in the Western world. Our method for sensing articulator movement, permanent magnetic articulography, relies on small, unobtrusive magnets attached to the lips and tongue. Changes in magnetic field caused by magnet movements are sensed and form the input to a process that is trained to estimate speech acoustics. In the experiments reported here this “Direct Synthesis” technique is developed for normal speakers, with glued-on magnets, allowing us to train with parallel sensor and acoustic data. We describe three machine learning techniques for this task, based on Gaussian mixture models, deep neural networks, and recurrent neural networks (RNNs). We evaluate our techniques with objective acoustic distortion measures and subjective listening tests over spoken sentences read from novels (the CMU Arctic corpus). Our results show that the best performing technique is a bidirectional RNN (BiRNN), which employs both past and future contexts to predict the acoustics from the sensor data. BiRNNs are not suitable for synthesis in real time but fixed-lag RNNs give similar results and, because they only look a little way into the future, overcome this problem. Listening tests show that the speech produced by this method has a natural quality that preserves the identity of the speaker. Furthermore, we obtain up to 92% intelligibility on the challenging CMU Arctic material. To our knowledge, these are the best results obtained for a silent-speech system without a restricted vocabulary and with an unobtrusive device that delivers audio in close to real time. This work promises to lead to a technology that truly will give people whose larynx has been removed their voices back

    Multimodal Approach for Assessing Neuromotor Coordination in Schizophrenia Using Convolutional Neural Networks

    Full text link
    This study investigates the speech articulatory coordination in schizophrenia subjects exhibiting strong positive symptoms (e.g. hallucinations and delusions), using two distinct channel-delay correlation methods. We show that the schizophrenic subjects with strong positive symptoms and who are markedly ill pose complex articulatory coordination pattern in facial and speech gestures than what is observed in healthy subjects. This distinction in speech coordination pattern is used to train a multimodal convolutional neural network (CNN) which uses video and audio data during speech to distinguish schizophrenic patients with strong positive symptoms from healthy subjects. We also show that the vocal tract variables (TVs) which correspond to place of articulation and glottal source outperform the Mel-frequency Cepstral Coefficients (MFCCs) when fused with Facial Action Units (FAUs) in the proposed multimodal network. For the clinical dataset we collected, our best performing multimodal network improves the mean F1 score for detecting schizophrenia by around 18% with respect to the full vocal tract coordination (FVTC) baseline method implemented with fusing FAUs and MFCCs.Comment: 5 pages. arXiv admin note: text overlap with arXiv:2102.0705

    EMG-to-Speech: Direct Generation of Speech from Facial Electromyographic Signals

    Get PDF
    The general objective of this work is the design, implementation, improvement and evaluation of a system that uses surface electromyographic (EMG) signals and directly synthesizes an audible speech output: EMG-to-speech

    Speech Recognition Using Connectionist Networks Dissertation Proposal

    Get PDF
    The thesis of the proposed research is that connectionist networks are adequate models for the problem of acoustic phonetic speech recognition by computer. Adequacy is defined as suitably high recognition performance on a representative set of speech recognition problems. Seven acoustic phonetic problems are selected and discussed in relation to a physiological theory of phonetics. It is argued that the selected tasks are sufficiently representative and difficult to constitute a reasonable test of adequacy. A connectionist network is a fine-grained parallel distributed processing configuration, in which simple processing elements are interconnected by scalar links. A connectionist network model for speech recognition has been defined called the temporal flow model. The model incorporates link propagation delay and internal feedback to express temporal relationships. The model is contrasted with other connectionist models in which time is represented explicitly by separate processing elements for each time sample. It has been shown previously that temporal flow models can be \u27trained\u27 to perform successfully some speech recognition tasks. A method of \u27learning\u27 using techniques of numerical nonlinear optimization has been demonstrated. Methods for extending these results to the problems selected for this research are presented
    • …
    corecore