2,706 research outputs found

    Robust Modeling of Epistemic Mental States

    Full text link
    This work identifies and advances some research challenges in the analysis of facial features and their temporal dynamics with epistemic mental states in dyadic conversations. Epistemic states are: Agreement, Concentration, Thoughtful, Certain, and Interest. In this paper, we perform a number of statistical analyses and simulations to identify the relationship between facial features and epistemic states. Non-linear relations are found to be more prevalent, while temporal features derived from original facial features have demonstrated a strong correlation with intensity changes. Then, we propose a novel prediction framework that takes facial features and their nonlinear relation scores as input and predict different epistemic states in videos. The prediction of epistemic states is boosted when the classification of emotion changing regions such as rising, falling, or steady-state are incorporated with the temporal features. The proposed predictive models can predict the epistemic states with significantly improved accuracy: correlation coefficient (CoERR) for Agreement is 0.827, for Concentration 0.901, for Thoughtful 0.794, for Certain 0.854, and for Interest 0.913.Comment: Accepted for Publication in Multimedia Tools and Application, Special Issue: Socio-Affective Technologie

    Detecting Low Rapport During Natural Interactions in Small Groups from Non-Verbal Behaviour

    Full text link
    Rapport, the close and harmonious relationship in which interaction partners are "in sync" with each other, was shown to result in smoother social interactions, improved collaboration, and improved interpersonal outcomes. In this work, we are first to investigate automatic prediction of low rapport during natural interactions within small groups. This task is challenging given that rapport only manifests in subtle non-verbal signals that are, in addition, subject to influences of group dynamics as well as inter-personal idiosyncrasies. We record videos of unscripted discussions of three to four people using a multi-view camera system and microphones. We analyse a rich set of non-verbal signals for rapport detection, namely facial expressions, hand motion, gaze, speaker turns, and speech prosody. Using facial features, we can detect low rapport with an average precision of 0.7 (chance level at 0.25), while incorporating prior knowledge of participants' personalities can even achieve early prediction without a drop in performance. We further provide a detailed analysis of different feature sets and the amount of information contained in different temporal segments of the interactions.Comment: 12 pages, 6 figure

    Macro-and Micro-Expressions Facial Datasets: A Survey

    Get PDF
    Automatic facial expression recognition is essential for many potential applications. Thus, having a clear overview on existing datasets that have been investigated within the framework of face expression recognition is of paramount importance in designing and evaluating effective solutions, notably for neural networks-based training. In this survey, we provide a review of more than eighty facial expression datasets, while taking into account both macro-and micro-expressions. The proposed study is mostly focused on spontaneous and in-the-wild datasets, given the common trend in the research is that of considering contexts where expressions are shown in a spontaneous way and in a real context. We have also provided instances of potential applications of the investigated datasets, while putting into evidence their pros and cons. The proposed survey can help researchers to have a better understanding of the characteristics of the existing datasets, thus facilitating the choice of the data that best suits the particular context of their application

    Improving the accuracy of automatic facial expression recognition in speaking subjects with deep learning

    Get PDF
    When automatic facial expression recognition is applied to video sequences of speaking subjects, the recognition accuracy has been noted to be lower than with video sequences of still subjects. This effect known as the speaking effect arises during spontaneous conversations, and along with the affective expressions the speech articulation process influences facial configurations. In this work we question whether, aside from facial features, other cues relating to the articulation process would increase emotion recognition accuracy when added in input to a deep neural network model. We develop two neural networks that classify facial expressions in speaking subjects from the RAVDESS dataset, a spatio-temporal CNN and a GRU cell RNN. They are first trained on facial features only, and afterwards both on facial features and articulation related cues extracted from a model trained for lip reading, while varying the number of consecutive frames provided in input as well. We show that using DNNs the addition of features related to articulation increases classification accuracy up to 12%, the increase being greater with more consecutive frames provided in input to the model

    Spotting Agreement and Disagreement: A Survey of Nonverbal Audiovisual Cues and Tools

    Get PDF
    While detecting and interpreting temporal patterns of non–verbal behavioral cues in a given context is a natural and often unconscious process for humans, it remains a rather difficult task for computer systems. Nevertheless, it is an important one to achieve if the goal is to realise a naturalistic communication between humans and machines. Machines that are able to sense social attitudes like agreement and disagreement and respond to them in a meaningful way are likely to be welcomed by users due to the more natural, efficient and human–centered interaction they are bound to experience. This paper surveys the nonverbal cues that could be present during agreement and disagreement behavioural displays and lists a number of tools that could be useful in detecting them, as well as a few publicly available databases that could be used to train these tools for analysis of spontaneous, audiovisual instances of agreement and disagreement

    Robust Modeling of Epistemic Mental States and Their Applications in Assistive Technology

    Get PDF
    This dissertation presents the design and implementation of EmoAssist: Emotion-Enabled Assistive Tool to Enhance Dyadic Conversation for the Blind . The key functionalities of the system are to recognize behavioral expressions and to predict 3-D affective dimensions from visual cues and to provide audio feedback to the visually impaired in a natural environment. Prior to describing the EmoAssist, this dissertation identifies and advances research challenges in the analysis of the facial features and their temporal dynamics with Epistemic Mental States in dyadic conversation. A number of statistical analyses and simulations were performed to get the answer of important research questions about the complex interplay between facial features and mental states. It was found that the non-linear relations are mostly prevalent rather than the linear ones. Further, the portable prototype of assistive technology that can aid blind individual to understand his/her interlocutor\u27s mental states has been designed based on the analysis. A number of challenges related to the system, communication protocols, error-free tracking of face and robust modeling of behavioral expressions /affective dimensions were addressed to make the EmoAssist effective in a real world scenario. In addition, orientation-sensor information from the phone was used to correct image alignment to improve the robustness in real life deployment. It was observed that the EmoAssist can predict affective dimensions with acceptable accuracy (Maximum Correlation-Coefficient for valence: 0.76, arousal: 0.78, and dominance: 0.76) in natural conversation. The overall minimum and maximum response-times are (64.61 milliseconds) and (128.22 milliseconds), respectively. The integration of sensor information for correcting the orientation has helped in significant improvement (16% in average) of accuracy in recognizing behavioral expressions. A user study with ten blind people shows that the EmoAssist is highly acceptable to them (Average acceptability rating using Likert: 6.0 where 1 and 7 are the lowest and highest possible ratings, respectively) in social interaction

    SEWA DB: A rich database for audio-visual emotion and sentiment research in the wild

    Get PDF
    Natural human-computer interaction and audio-visual human behaviour sensing systems, which would achieve robust performance in-the-wild are more needed than ever as digital devices are becoming indispensable part of our life more and more. Accurately annotated real-world data are the crux in devising such systems. However, existing databases usually consider controlled settings, low demographic variability, and a single task. In this paper, we introduce the SEWA database of more than 2000 minutes of audio-visual data of 398 people coming from six cultures, 50% female, and uniformly spanning the age range of 18 to 65 years old. Subjects were recorded in two different contexts: while watching adverts and while discussing adverts in a video chat. The database includes rich annotations of the recordings in terms of facial landmarks, facial action units (FAU), various vocalisations, mirroring, and continuously valued valence, arousal, liking, agreement, and prototypic examples of (dis)liking. This database aims to be an extremely valuable resource for researchers in affective computing and automatic human sensing and is expected to push forward the research in human behaviour analysis, including cultural studies. Along with the database, we provide extensive baseline experiments for automatic FAU detection and automatic valence, arousal and (dis)liking intensity estimation

    Non-acted multi-view audio-visual dyadic Interactions. Project master thesis: multi-modal local and recurrent non-verbal emotion recognition in dyadic scenarios

    Get PDF
    Treballs finals del Màster de Fonaments de Ciència de Dades, Facultat de matemàtiques, Universitat de Barcelona, Any: 2019, Tutor: Sergio Escalera Guerrero i Cristina Palmero[en] In particular, this master thesis is focused on the development of baseline emotion recognition system in a dyadic environment using raw and handcraft audio features and cropped faces from the videos. This system is analyzed at frame and utterance level with and without temporal information. For this reason, an exhaustive study of the state-of-the-art on emotion recognition techniques has been conducted, paying particular attention on Deep Learning techniques for emotion recognition. While studying the state-of-the-art from the theoretical point of view, a dataset consisting of videos of sessions of dyadic interactions between individuals in different scenarios has been recorded. Different attributes were captured and labelled from these videos: body pose, hand pose, emotion, age, gender, etc. Once the architectures for emotion recognition have been trained with other dataset, a proof of concept is done with this new database in order to extract conclusions. In addition, this database can help future systems to achieve better results. A large number of experiments with audio and video are performed to create the emotion recognition system. The IEMOCAP database is used to perform the training and evaluation experiments of the emotion recognition system. Once the audio and video are trained separately with two different architectures, a fusion of both methods is done. In this work, the importance of preprocessing data (i.e. face detection, windows analysis length, handcrafted features, etc.) and choosing the correct parameters for the architectures (i.e. network depth, fusion, etc.) has been demonstrated and studied, while some experiments to study the influence of the temporal information are performed using some recurrent models for the spatiotemporal utterance level recognition of emotion. Finally, the conclusions drawn throughout this work are exposed, as well as the possible lines of future work including new systems for emotion recognition and the experiments with the database recorded in this work
    corecore