576 research outputs found

    Kilo-instruction processors: overcoming the memory wall

    Get PDF
    Historically, advances in integrated circuit technology have driven improvements in processor microarchitecture and led to todays microprocessors with sophisticated pipelines operating at very high clock frequencies. However, performance improvements achievable by high-frequency microprocessors have become seriously limited by main-memory access latencies because main-memory speeds have improved at a much slower pace than microprocessor speeds. Its crucial to deal with this performance disparity, commonly known as the memory wall, to enable future high-frequency microprocessors to achieve their performance potential. To overcome the memory wall, we propose kilo-instruction processors-superscalar processors that can maintain a thousand or more simultaneous in-flight instructions. Doing so means designing key hardware structures so that the processor can satisfy the high resource requirements without significantly decreasing processor efficiency or increasing energy consumption.Peer ReviewedPostprint (published version

    Transparently Mixing Undo Logs and Software Reversibility for State Recovery in Optimistic PDES

    Get PDF
    The rollback operation is a fundamental building block to support the correct execution of a speculative Time Warp-based Parallel Discrete Event Simulation. In the literature, several solutions to reduce the execution cost of this operation have been proposed, either based on the creation of a checkpoint of previous simulation state images, or on the execution of negative copies of simulation events which are able to undo the updates on the state. In this paper, we explore the practical design and implementation of a state recoverability technique which allows to restore a previous simulation state either relying on checkpointing or on the reverse execution of the state updates occurred while processing events in forward mode. Differently from other proposals, we address the issue of executing backward updates in a fully-transparent and event granularity-independent way, by relying on static software instrumentation (targeting the x86 architecture and Linux systems) to generate at runtime reverse update code blocks (not to be confused with reverse events, proper of the reverse computing approach). These are able to undo the effects of a forward execution while minimizing the cost of the undo operation. We also present experimental results related to our implementation, which is released as free software and fully integrated into the open source ROOT-Sim (ROme OpTimistic Simulator) package. The experimental data support the viability and effectiveness of our proposal

    Optimizing memory management for optimistic simulation with reinforcement learning

    Get PDF
    Simulation is a powerful technique to explore complex scenarios and analyze systems related to a wide range of disciplines. To allow for an efficient exploitation of the available computing power, speculative Time Warp-based Parallel Discrete Event Simulation is universally recognized as a viable solution. In this context, the rollback operation is a fundamental building block to support a correct execution even when causality inconsistencies are a posteriori materialized. If this operation is supported via checkpoint/restore strategies, memory management plays a fundamental role to ensure high performance of the simulation run. With few exceptions, adaptive protocols targeting memory management for Time Warp-based simulations have been mostly based on a pre-defined analytic models of the system, expressed as a closed-form functions that map system's state to control parameters. The underlying assumption is that the model itself is optimal. In this paper, we present an approach that exploits reinforcement learning techniques. Rather than assuming an optimal control strategy, we seek to find the optimal strategy through parameter exploration. A value function that captures the history of system feedback is used, and no a-priori knowledge of the system is required. An experimental assessment of the viability of our proposal is also provided for a mobile cellular system simulation

    Optimal Checkpointing for Secure Intermittently-Powered IoT Devices

    Full text link
    Energy harvesting is a promising solution to power Internet of Things (IoT) devices. Due to the intermittent nature of these energy sources, one cannot guarantee forward progress of program execution. Prior work has advocated for checkpointing the intermediate state to off-chip non-volatile memory (NVM). Encrypting checkpoints addresses the security concern, but significantly increases the checkpointing overheads. In this paper, we propose a new online checkpointing policy that judiciously determines when to checkpoint so as to minimize application time to completion while guaranteeing security. Compared to state-of-the-art checkpointing schemes that do not account for the overheads of encrypted checkpoints we improve execution time up to 1.4x.Comment: ICCAD 201

    Solving multiprocessor drawbacks with kilo-instruction processors

    Get PDF
    Nowadays, a good multiprocessor system design has to deal with many drawbacks in order to achieve a good tradeoff between complexity and performance. For example, while solving problems like coherence and consistency is essential for correctness the way to solve processor stalls due to critical sections and synchronization points is desirable for performance. And none of these drawbacks has a straightforward solution. We show in our paper how the multi-checkpointing mechanism of the Kilo-Instruction Processors can be correctly leveraged in order to achieve a good complexity-effective multiprocessor design. Specifically, we describe a Kilo-Instruction Multiprocessor that transparently, i.e. without any software support, uses transaction-based memory updates. Our model simplifies the coherence and consistency hardware and gives the potential for easily applying different desirable speculative mechanisms to enhance performance when facing some synchronization constructs of current parallel applications.Postprint (published version

    Avoiding core's DUE & SDC via acoustic wave detectors and tailored error containment and recovery

    Get PDF
    The trend of downsizing transistors and operating voltage scaling has made the processor chip more sensitive against radiation phenomena making soft errors an important challenge. New reliability techniques for handling soft errors in the logic and memories that allow meeting the desired failures-in-time (FIT) target are key to keep harnessing the benefits of Moore's law. The failure to scale the soft error rate caused by particle strikes, may soon limit the total number of cores that one may have running at the same time. This paper proposes a light-weight and scalable architecture to eliminate silent data corruption errors (SDC) and detected unrecoverable errors (DUE) of a core. The architecture uses acoustic wave detectors for error detection. We propose to recover by confining the errors in the cache hierarchy, allowing us to deal with the relatively long detection latencies. Our results show that the proposed mechanism protects the whole core (logic, latches and memory arrays) incurring performance overhead as low as 0.60%. © 2014 IEEE.Peer ReviewedPostprint (author's final draft
    • …
    corecore