2,917 research outputs found

    Recovery of surface orientation from diffuse polarization

    Get PDF
    When unpolarized light is reflected from a smooth dielectric surface, it becomes partially polarized. This is due to the orientation of dipoles induced in the reflecting medium and applies to both specular and diffuse reflection. This paper is concerned with exploiting polarization by surface reflection, using images of smooth dielectric objects, to recover surface normals and, hence, height. This paper presents the underlying physics of polarization by reflection, starting with the Fresnel equations. These equations are used to interpret images taken with a linear polarizer and digital camera, revealing the shape of the objects. Experimental results are presented that illustrate that the technique is accurate near object limbs, as the theory predicts, with less precise, but still useful, results elsewhere. A detailed analysis of the accuracy of the technique for a variety of materials is presented. A method for estimating refractive indices using a laser and linear polarizer is also given

    Fermionic Casimir Effect in Case of Andreev Reflection

    Get PDF
    We describe the Fermionic Casimir effect in the case of two spherical superfluid scatterers immersed in a normal Fermi system. It is shown that due to the focusing property of Andreev reflection this new Casimir-like energy is significantly enhanced when compared to the case of normal scatterers with specular reflection.Comment: 7 pages, 4 eps figures, latex (with epl.cls

    Specular Reflection Image Enhancement Based on a Dark Channel Prior

    Get PDF

    Segmentation of Specular Highlights from Object Surfaces

    Get PDF
    A major hindrance to image segmentation tasks are the presence of specular highlights on object surfaces. Specular highlights appear on object surfaces where the specular component of reflection from illuminating light sources is so dominant that most detail of the object surface is obscured by a bright region of reflected light. Specular highlights are very common artifacts of most lighting environments and are not part of the intrinsic visible detail of an object surface. As a result, in addition to obscuring visible detail, specular highlight regions of an image can easily deceive image understanding algorithms into interpreting these regions as separate objects or regions on an object with high albedo. Recently, a couple of approaches to identifying specular highlight regions in images of object surfaces have produced some good results using color analysis. Unfortunately these methods work only for dielectric materials (e.g. plastic, rubber etc.) and require that the color of the object be different from the color of the light source. In this paper a technique is presented exploiting the polarization properties of reflected light to identify specular highlight regions. This technique works for both dielectric and metal surfaces regardless of the color of the illuminating light source, or the color detail on the object surface. In addition to separating out diffuse and specular components of reflection, the technique presented here also as a bonus can identify whet her certain image regions correspond to a dielectric or metal object surface. Extensive experimentation will be presented for a variety of dielectric and metal surfaces, both polished and rough. Experimentation with coated surfaces using the technique presented here have not yet been studied

    Double scattering of light from biophotonic nanostructures with short-range order

    Full text link
    We investigate the physical mechanism for color production by isotropic nanostructures with short-range order in bird feather barbs. While the primary peak in optical scattering spectra results from constructive interference of singly-scattered light, many species exhibit secondary peaks with distinct characteristic. Our experimental and numerical studies show that these secondary peaks result from double scattering of light by the correlated structures. Without an analog in periodic or random structures, such a phenomenon is unique for short-range ordered structures, and has been widely used by nature for non-iridescent structural coloration.Comment: 10 pages, 4 figure

    Robust Specularity Removal from Hand-held Videos

    Get PDF
    Specular reflection exists when one tries to record a photo or video through a transparent glass medium or opaque surfaces such as plastics, ceramics, polyester and human skin, which can be well described as the superposition of a transmitted layer and a reflection layer. These specular reflections often confound the algorithms developed for image analysis, computer vision and pattern recognition. To obtain a pure diffuse reflection component, specularity (highlights) needs to be removed. To handle this problem, a novel and robust algorithm is formulated. The contributions of this work are three-fold.;First, the smoothness of the video along with the temporal coherence and illumination changes are preserved by reducing the flickering and jagged edges caused by hand-held video acquisition and homography transformation respectively.;Second, this algorithm is designed to improve upon the state-of-art algorithms by automatically selecting the region of interest (ROI) for all the frames, reducing the computational time and complexity by utilizing the luminance (Y) channel and exploiting the Augmented Lagrange Multiplier (ALM) with Alternating Direction Minimizing (ADM) to facilitate the derivation of solution algorithms.;Third, a quantity metrics is devised, which objectively quantifies the amount of specularity in each frame of a hand-held video. The proposed specularity removal algorithm is compared against existing state-of-art algorithms using the newly-developed quantity metrics. Experimental results validate that the developed algorithm has superior performance in terms of computation time, quality and accuracy

    Effectiveness of specularity removal from hyperspectral images on the quality of spectral signatures of food products

    Get PDF
    Specularity or highlight problem exists widely in hyperspectral images, provokes reflectance deviation from its true value, and can hide major defects in food objects or detecting spurious false defects causing failure of inspection and detection processes. In this study, a new non-iterative method based on the dichromatic reflection model and principle component analysis (PCA) was proposed to detect and remove specular highlight components from hyperspectral images acquired by various imaging modes and under different configurations for numerous agro-food products. To demonstrate the effectiveness of this approach, the details of the proposed method were described and the experimental results on various spectral images were presented. The results revealed that the method worked well on all hyperspectral and multispectral images examined in this study, effectively reduced the specularity and significantly improves the quality of the extracted spectral data. Besides the spectral images from available databases, the robustness of this approach was further validated with real captured hyperspectral images of different food materials. By using qualitative and quantitative evaluation based on running time and peak signal to noise ratio (PSNR), the experimental results showed that the proposed method outperforms other specularity removal methods over the datasets of hyperspectral and multispectral images.info:eu-repo/semantics/acceptedVersio

    Andreev reflection and Klein tunneling in graphene

    Full text link
    This is a colloquium-style introduction to two electronic processes in a carbon monolayer (graphene), each having an analogue in relativistic quantum mechanics. Both processes couple electron-like and hole-like states, through the action of either a superconducting pair potential or an electrostatic potential. The first process, Andreev reflection, is the electron-to-hole conversion at the interface with a superconductor. The second process, Klein tunneling, is the tunneling through a p-n junction. Existing and proposed experiments on Josephson junctions and bipolar junctions in graphene are discussed from a unified perspective. CONTENTS: I. INTRODUCTION II. BASIC PHYSICS OF GRAPHENE (Dirac equation; Time reversal symmetry; Boundary conditions; Pseudo-diffusive dynamics) III. ANDREEV REFLECTION (Electron-hole conversion; Retro-reflection vs. specular reflection; Dirac-Bogoliubov-de Gennes equation; Josephson junctions; Further reading) IV. KLEIN TUNNELING (Absence of backscattering; Bipolar junctions; Magnetic field effects; Further reading) V. ANALOGIES (Mapping between NS and p-n junction; Retro-reflection vs. negative refraction; Valley-isospin dependent quantum Hall effect; Pseudo-superconductivity)Comment: 20 pages, 28 figures; "Colloquium" for Reviews of Modern Physic
    • …
    corecore