727 research outputs found

    A survey on OFDM-based elastic core optical networking

    Get PDF
    Orthogonal frequency-division multiplexing (OFDM) is a modulation technology that has been widely adopted in many new and emerging broadband wireless and wireline communication systems. Due to its capability to transmit a high-speed data stream using multiple spectral-overlapped lower-speed subcarriers, OFDM technology offers superior advantages of high spectrum efficiency, robustness against inter-carrier and inter-symbol interference, adaptability to server channel conditions, etc. In recent years, there have been intensive studies on optical OFDM (O-OFDM) transmission technologies, and it is considered a promising technology for future ultra-high-speed optical transmission. Based on O-OFDM technology, a novel elastic optical network architecture with immense flexibility and scalability in spectrum allocation and data rate accommodation could be built to support diverse services and the rapid growth of Internet traffic in the future. In this paper, we present a comprehensive survey on OFDM-based elastic optical network technologies, including basic principles of OFDM, O-OFDM technologies, the architectures of OFDM-based elastic core optical networks, and related key enabling technologies. The main advantages and issues of OFDM-based elastic core optical networks that are under research are also discussed

    Nonlinearity and Noise Effects in Multi-level Signal Millimeter-Wave over Fiber Transmission using Single- and Dual-Wavelength Modulation

    Get PDF
    We transmit multilevel quadrature amplitude modulation (QAM) data-IEEE 802.16 schemes-at 20 MSps and an orthogonal frequency-division multiplexing (OFDM) 802.11 g signal (54 Mbps) with a 25 GHz millimeter-wave over fiber system, which employs a dual wavelength source, over 20 km of single mode fiber. Downlink data transmission is successfully demonstrated over both optical and wireless (up to 12 m) paths with good error vector magnitude. An analysis of two different schemes, in which data is applied to one (single) and both (dual) of the wavelengths of a dual wavelength source, is carried out. The system performance is analyzed through simulation and a good match with experimental results is obtained. The analysis investigates the impact of Mach-Zehnder modulator (MZM) and RF amplifier nonlinearity and various noise sources, such as laser relative intensity noise, amplified spontaneous emission, thermal, and shot noise. A comparison of single carrier QAM IEEE 802.16 and OFDM in terms of their sensitivity to the distortions from MZM and RF amplifier nonlinearity is also presented

    Characterization and design of coherent optical OFDM transmission systems based on Hartley Transform

    Get PDF
    Nowadays, due to huge deployment of optical transport networks, a continuous increase towards higher data rates up to 100 Gb/s and beyond is observed. Furthermore, an evolution of the current optical networks is forecasted, acquiring new functionalities, e.g. elastic spectrum assignment for the optical signals. The target for these new challenges in transmission is to find techniques ready to deal with a growth of demand for bandwidth continuously asked by network operators, for whom the standard systems do not meet the new functionalities while higher rates are being set up. A solution for covering all of those needs is to adapt techniques capable to deal with such enormous data rates, and ensuring the same high efficiency for long distances and mitigate the optical impairments accumulated along the transmission path. Additionally, these transmission techniques are expected to provide some degree of flexibility, in order to enhance the network flexibility. A promising technology that can fully cope with those requires is the coherent optical orthogonal frequency division multiplexing (CO-OFDM). CO-OFDM provides several advantages, namely high sensitivity and spectral efficiency, simple integration and possibility to fully recover a signal in phase, amplitude and polarization. These systems are composed by digital signal processing (DSP) blocks that easily process data and can equalize and compensate the main impairments, providing high tolerance for dispersion effects. However, CO-OFDM systems are not free from drawbacks. Their high peak-to-average power ratio (PAPR) reduce their tolerance to nonlinearities. Furthermore, CO-OFDM systems are sensitive to any frequency shift and phase offset. Hence, a constant envelope optical OFDM (CE-OFDM) is proposed for significantly reducing the PAPR and solving high sensitivity to nonlinear impairments. It consists in a phase modulated discrete multi-tone signal, which is coherently detected at the receiver side. An alternative transform, the discrete Hartley transform, is proposed to speed up calculations in the DSP and eliminate the need to have a Hermitian symmetry. The optical CE-OFDM by its unique flexibility and rate scalability turns out as a great technology applicable to different configurations, ranging from access to core networks. In case of access solutions, several cases are investigated. First, the optical CE-OFDM is applied for radio access network signals delivery by means of a wavelength division multiplexing (WDM) overlay in deployed access architecture. A decomposed radio access network is deployed over an existing standard passive optical network (PON), capable to avoid interference and cross talks with access signals between network clients. The system exhibited narrow channel spacing, while reducing losses fed into the access equipment path. Next, a full duplex 10 Gb/s bidirectional PON transmission over a single wavelength with RSOA based ONU is investigated. The key point of that system is the upstream transmission, which is achieved re-modulating the phase of a downstream intensity modulated signal after proper saturation. The reported sensitivity performances show a power budget matching the PON standards and an OSNR easy to reach on non-amplified PON. Next, a flexible metropolitan area network of up to 100km with traffic add/drop using WDM is investigated. There the narrowing effect of the optical filters is studied. Finally, an elastic upgrade of the existing Telefonica model of the Spanish national core network is proposed. For that, the transceiver architecture is proposed to be operated featuring polarization multiplexing. Respect to the existing fixed grid, the flexible approach (enabled by the CE-OFDM transceiver) results into reduced bandwidth occupancy and low OSNR requirement.Hoy en día, debido al gran despliegue de las redes de ópticas de transporte, se espera un aumento continuado hacia mayores velocidades de datos, hasta 100 Gb/s y más allá. Por otra parte, la evolución que se prevé para las redes ópticas actuales, incluye la adquisición de nuevas funcionalidades, por ejemplo, la asignación del espectro de forma elástica para las señales ópticas. Por tanto, el claro desafío en cuanto a las tecnologías de transmisión es encontrar técnicas preparadas para hacer frente a un crecimiento de la demanda de ancho de banda; demanda que continuamente se incrementa por parte de los operadores de red, para quienes los sistemas estándar no se acaban de ajustar a las nuevas funcionalidades que esperan para la red. Una solución para cubrir todas estas necesidades es la adaptación de técnicas capaces de hacer frente a estas velocidades de datos enormes, y garantizar el mismo nivel de eficiencia para las largas distancias y mitigar las deficiencias ópticas acumuladas a lo largo de la ruta de transmisión. Además, se espera que estas técnicas de transmisión puedan proporcionar cierto grado de flexibilidad, a fin de mejorar y hacer más eficiente la gestión de la red. Una tecnología prometedora que puede hacer frente a estos requisitos es lo que se llama multiplexación por división de frecuencias ortogonales, combinado con la detección óptica coherente (CO-OFDM). CO-OFDM ofrece varias ventajas, entre otras: alta sensibilidad y eficiencia espectral y, sobre todo, la posibilidad de recuperar por completo de una señal en fase, la amplitud y la polarización. Estos sistemas están compuestos por bloques de procesado de señales digitales (DSP) que permiten detectar los datos fácilmente así como también compensar las principales degradaciones, proporcionando alta tolerancia a los efectos de dispersión. Sin embargo, los sistemas CO-OFDM no están exentos de inconvenientes. Su alta relación de potencia de pico a potencia media (PAPR) reduce sensiblemente la tolerancia no linealidades. Por otra parte, los sistemas CO-OFDM son sensibles a cualquier cambio de frecuencia y desplazamiento de fase. Por tanto, se propone un sistema OFDM de envolvente constante (CE-OFDM) para reducir significativamente la PAPR y solucionar la alta sensibilidad a las degradaciones no lineales. Consiste en una señal OFDM modulada en fase, que se detecta coherentemente en el receptor. Una transformada alternativa, la transformada discreta de Hartley, se propone para acelerar los cálculos en el DSP. El sistema CE-OFDM por su flexibilidad y escalabilidad única, resulta una tecnología aplicable a diferentes escenarios, que van desde las redes de acceso hasta las redes troncales. En el caso de las soluciones de acceso, se investigan varios casos. En primer lugar, el CE-OFDM aplica para el desarrollo y soporte de datos de una red radio, reutilizando una red óptica de acceso ya desplegada. A continuación, se investiga la transmisión bidireccional dúplex a 10 Gb / s sobre una sola longitud de onda empleando un RSOA a las unidades de usuario. El punto clave de este sistema es la transmisión en sentido ascendente, que se consigue re-modulando la fase de una señal de intensidad modulada después de saturar de forma adecuada. A continuación, se estudia una red de área metropolitana flexible de hasta 100 km. Concretamente el efecto de concatenación de filtros ópticos es el objetivo de este estudio. Finalmente, se propone una actualización elástica del modelo de Telefónica I+D para la red troncal española. Por ello, se propone operar el CE-OFDM en multiplexación de polarización. Los resultados muestran que esta combinación reduce sensiblemente el empleo de ancho de banda esto como los requisitos de los enlaces transmisión, reduciendo también los costes tanto de desarrollo como de operación y mantenimiento de la red.Avui dia, a causa del gran desplegament de les xarxes de òptiques de transport, s'espera un augment continuat cap a majors velocitats de dades, fins a 100 Gb/s i més enllà. D'altra banda, l'evolució que es preveu per a les xarxes òptiques actuals, inclou l'adquisició de noves funcionalitats, per exemple, assignació de l'espectre de forma elàstica per als senyals òptics. Per tant, el clar desafiament pel que fa a les tecnologies de transmissió és trobar tècniques preparades per fer front a un creixement de la demanda d'ample de banda; demanda que contínuament es fa per part dels operadors de xarxa, per als qui els sistemes estàndard no s'acaben d'ajustar a les noves funcionalitats que esperen per a la xarxa. Una solució per a cobrir totes aquestes necessitats és l'adaptació de tècniques capaces de fer front a aquestes velocitats de dades enormes, i garantir el mateix nivell d'eficiència per a les llargues distàncies i mitigar les deficiències òptiques acumulades al llarg de la ruta de transmissió. A més, s'espera que aquestes tècniques de transmissió puguin proporcionar cert grau de flexibilitat, per tal de millorar i tornar més eficient la gestió de la xarxa. Una tecnologia prometedora que pot fer front a aquests requisits és el que s'anomena multiplexació per divisió de freqüències ortogonals, combinat amb la detecció òptica coherent (CO-OFDM). CO-OFDM ofereix diversos avantatges, entre altres: alta sensibilitat i eficiència espectral i, sobretot, la possibilitat de recuperar per complet d'una senyal en fase, l'amplitud i la polarització. Aquests sistemes estan compostos per blocs de processament de senyals digitals (DSP) que permeten detectar les dades fàcilment així com també compensar les principals degradacions, proporcionant alta tolerància pels efectes de dispersió. No obstant això, els sistemes CO-OFDM no estan exempts d'inconvenients. La seva alta relació de potència de pic a potència mitjana (PAPR) redueix sensiblement la tolerància a no linealitats. D'altra banda, els sistemes de CO-OFDM són sensibles a qualsevol canvi de freqüència i desplaçament de fase. Per tant, es proposa un sistema OFDM d'envolvent constant (CE-OFDM) per a reduir significativament la PAPR i solucionar l'alta sensibilitat a les degradacions no lineals. Consisteix en un senyal OFDM modulat en fase, que es detecta coherentment en el receptor. Una transformada alternativa, la transformada discreta d'Hartley, es proposa accelerar els càlculs en el DSP. El sistema CE-OFDM per la seva flexibilitat i escalabilitat única, resulta una tecnologia aplicable a diferents escenaris, que van des de les xarxes d'accés fins a les xarxes troncals. En el cas de les solucions d'accés, s'investiguen diversos casos. En primer lloc, el CE-OFDM s'aplica per al desplegament i suport de dades d'una xarxa radio, reutilitzant una xarxa òptica d'accés ja desplegada. A continuació, s'investiga la transmissió bidireccional dúplex a 10 Gb/s sobre una sola longitud d'ona emprant un RSOA a les unitats d'usuari. El punt clau d'aquest sistema és la transmissió en sentit ascendent, que s'aconsegueix re-modulant la fase d'un senyal d'intensitat modulada després de saturar-la de forma adequada. A continuació, s'estudia una xarxa d'àrea metropolitana flexible de fins a 100 km. Concretament l'efecte de concatenació de filtres òptics és l'objectiu d'aquest estudi. Finalment, es proposa una actualització elàstica del model de Telefónica I+D per a la xarxa troncal espanyola. Per això, es proposa operar el CE-OFDM en multiplexació de polarització. Els resultats mostren que aquesta combinació redueix sensiblement l'ocupació d'ample de banda això com també els requisits dels enllaços transmissió, reduint també els costos tant de desplegament com d'operació i manteniment de la xarxa

    Power Control In Optical CDMA

    Get PDF
    Optical CDMA (OCDMA) is the multiplexing technique over the fiber optics medium to increase the number of users and this is a step towards all optical Passive Optical Networks (PON). Optical OFDM, WDM and Optical TDM have also been studied in this thesis which are also candidates to all optical passive optical networks. One of the main features of Optical CDMA over other multiplexing techniques is that it has smooth capacity. The capacity of OCDMA is constrained by the interference level. Hence, when some users are offline or requesting less data rates, then the capacity will be increased in the network. Same feature could be obtained in other multiplexing techniques, but they will need much more complicated online organizers. However, in OCDMA it is critical to adjust the transmission power to the right value; otherwise, near-far problem may greatly reduce the network capacity and performance. In this thesis Power control concepts are analyzed in optical CDMA star networks. It is applied so that the QoS of the network get enhanced and all users after the power control have their desired signal to interference (SIR) value. Moreover, larger number of users can be accommodated in the network. Centralized power control algorithm is considered for this thesis. In centralized algorithm noiseless case and noisy case have been studied. In this thesis several simulations have been performed which shows the QoS difference before and after power control. The simulation results are validated also by the theoretical computation.fi=Opinnäytetyö kokotekstinä PDF-muodossa.|en=Thesis fulltext in PDF format.|sv=Lärdomsprov tillgängligt som fulltext i PDF-format

    Key technologies for present and future optical networks

    Get PDF

    High Data Rate Coherent Optical OFDM System for Long-Haul Transmission

    Get PDF
    The growth in internet traffic has driven the increase in demand for bandwidth and high data rates. Optical Orthogonal Frequency Division Multiplexing is considered as a promising technology to satisfy the increased demand for bandwidth in broadband services. Optical OFDM received a great attention after proposing it as a modulation technique for the long-haul transmission in both direct and coherent detection. However, Coherent Optical OFDM (CO-OFDM) is the next generation technology for the optical communications, since it integrates the advantages of both coherent systems and OFDM systems. It has the ability to overcome many optical fiber restrictions such as chromatic dispersion (CD) and polarization mode dispersion (PMD). Moreover, Integrating the Coherent Optical OFDM with Wavelength Division Multiplexing (WDM) systems will provide the transmission system with a high bandwidth, a significant data rates, and a high spectral efficiency without increasing the cost or the complexity of the system. WDM systems help to enhance the capacity and the data rate of the system by sending multiple wavelengths over a single fiber. This research focuses on the implementation and performance analysis of high data rate coherent optical OFDM for long-haul transmission. The study starts with a single user and extends to the implanting of the WDM system. OptiSystem-12 simulation tool is fully used to design and implement the system. The system utilizes to carry range of data rates start from 10 Gbps to 1 Tbps, 4-QAM (2 bits-per-symbol) is used a modulation type for the OFDM signal, Optical I/Q modulation is employed at the transmitter and coherent detection is employed at the receiver. The performance of the system is studied and analyzed system in terms of Bit-Error-Rate (BER), the effect of the transmission distance on the Optical-Signal-to-Noise-Ratio (OSNR), and the relation of BER and OSNR with regard to the transmission distance
    corecore