31,368 research outputs found

    SPECTRUM-BASED AND COLLABORATIVE NETWORK TOPOLOGY ANALYSIS AND VISUALIZATION

    Get PDF
    Networks are of significant importance in many application domains, such as World Wide Web and social networks, which often embed rich topological information. Since network topology captures the organization of network nodes and links, studying net- work topology is very important to network analysis. In this dissertation, we study networks by analyzing their topology structure to explore community structure, the relationship among network members and links as well as their importance to the belonged communities. We provide new network visualization methods by studying network topology through two aspects: spectrum-based and collaborative visualiza- tion techniques. For the spectrum-based network visualization, we use eigenvalues and eigenvectors to express network topological features instead of using network datasets directly. We provide a visual analytics approach to analyze unsigned networks based on re- cent achievements on spectrum-based analysis techniques which utilize the features of node distribution and coordinates in the high dimensional spectral space. To assist the interactive exploration of network topologies, we have designed network visual- ization and interactive analysis methods allowing users to explore the global topology structure. Further, to address the question of real-life applications involving of both positive and negative relationships, we present a spectral analysis framework to study both signed and unsigned networks. Our framework concentrates on two problems of net- work analysis - what are the important spectral patterns and how to use them to study signed networks. Based on the framework, we present visual analysis methods, which guide the selection of k-dimensional spectral space and interactive exploration of network topology. With the increasing complexity and volume of dynamic networks, it is important to adopt strategies of joint decision-making through developing collaborative visualiza- tion approaches. Thus, we design and develop a collaborative detection mechanism with matrix visualization for complex intrusion detection applications. We establish a set of collaboration guidelines for team coordination with distributed visualization tools. We apply them to generate a prototype system with interactions that facilitates collaborative visual analysis. In order to evaluate the collaborative detection mechanism, a formal user study is presented. The user study monitored participants to collaborate under co-located and distributed collaboration environments to tackle the problems of intrusion detection. We have observed participants’ behaviors and collected their performances from the aspects of coordination and communication. Based on the results, we conclude several coordination strategies and summarize the values of communication for collaborative visualization. Our visualization methods have been demonstrated to be efficient topology explo- ration with both synthetic and real-life datasets in spectrum-based and collaborative exploration. We believe that our methods can provide useful information for future design and development of network topology visualization system

    Visualizing Sensor Network Coverage with Location Uncertainty

    Full text link
    We present an interactive visualization system for exploring the coverage in sensor networks with uncertain sensor locations. We consider a simple case of uncertainty where the location of each sensor is confined to a discrete number of points sampled uniformly at random from a region with a fixed radius. Employing techniques from topological data analysis, we model and visualize network coverage by quantifying the uncertainty defined on its simplicial complex representations. We demonstrate the capabilities and effectiveness of our tool via the exploration of randomly distributed sensor networks

    A semi-supervised approach to visualizing and manipulating overlapping communities

    Get PDF
    When evaluating a network topology, occasionally data structures cannot be segmented into absolute, heterogeneous groups. There may be a spectrum to the dataset that does not allow for this hard clustering approach and may need to segment using fuzzy/overlapping communities or cliques. Even to this degree, when group members can belong to multiple cliques, there leaves an ever present layer of doubt, noise, and outliers caused by the overlapping clustering algorithms. These imperfections can either be corrected by an expert user to enhance the clustering algorithm or to preserve their own mental models of the communities. Presented is a visualization that models overlapping community membership and provides an interactive interface to facilitate a quick and efficient means of both sorting through large network topologies and preserving the user's mental model of the structure. © 2013 IEEE

    Adaptive visualization of research communities

    Get PDF
    Adaptive visualization approaches attempt to tune the content and the topology of information visualization to various user characteristics. While adapting visualization to user cognitive traits, goals, or knowledge has been relatively well explored, some other user characteristics have received no attention. This paper presents a methodology to adapt a traditional cluster-based visualization of communities to user individual model of community organization. This class of user-adapted visualization is not only achievable, but expected due to real world situation where users cannot be segmented into heterogeneous communities since many users have affinity to more than one group. An interactive clustering and visualization approach presented in the paper allows the user communicate their personal mental models of overlapping communities to the clustering algorithm itself and obtain a community visualization image that more realistically fits their prospects

    The Internet AS-Level Topology: Three Data Sources and One Definitive Metric

    Full text link
    We calculate an extensive set of characteristics for Internet AS topologies extracted from the three data sources most frequently used by the research community: traceroutes, BGP, and WHOIS. We discover that traceroute and BGP topologies are similar to one another but differ substantially from the WHOIS topology. Among the widely considered metrics, we find that the joint degree distribution appears to fundamentally characterize Internet AS topologies as well as narrowly define values for other important metrics. We discuss the interplay between the specifics of the three data collection mechanisms and the resulting topology views. In particular, we show how the data collection peculiarities explain differences in the resulting joint degree distributions of the respective topologies. Finally, we release to the community the input topology datasets, along with the scripts and output of our calculations. This supplement should enable researchers to validate their models against real data and to make more informed selection of topology data sources for their specific needs.Comment: This paper is a revised journal version of cs.NI/050803

    K-core decomposition of Internet graphs: hierarchies, self-similarity and measurement biases

    Get PDF
    We consider the kk-core decomposition of network models and Internet graphs at the autonomous system (AS) level. The kk-core analysis allows to characterize networks beyond the degree distribution and uncover structural properties and hierarchies due to the specific architecture of the system. We compare the kk-core structure obtained for AS graphs with those of several network models and discuss the differences and similarities with the real Internet architecture. The presence of biases and the incompleteness of the real maps are discussed and their effect on the kk-core analysis is assessed with numerical experiments simulating biased exploration on a wide range of network models. We find that the kk-core analysis provides an interesting characterization of the fluctuations and incompleteness of maps as well as information helping to discriminate the original underlying structure
    • …
    corecore