8,532 research outputs found

    Broadband Spectrum Survey Measurements for Cognitive Radio Applications

    Get PDF
    It is well known that the existing spectrum licensing system results in a gross under-utilization of the frequency spectrum. Spectrum background measurements – spectrum surveys – provide useful data for spectrum regulation, planning or finding frequency niches for spectrum sharing. Dynamic spectrum sharing as a main goal of cognitive radio (CR) is the modern option on how to optimize usage of the frequency spectrum. A spectrum survey measurement system is introduced with results obtained from a variety of markedly different scenarios allowing us, unlike other studies, to focus on wideband and fast spectrum scans. The sensitivity of the receiver is no worse than -113 dBm in the whole band. The utilization of the frequency spectrum is analyzed to prove its under-utilization and to show spectrum sharing opportunities. This was shown to be true in the frequency band higher than 2.5 GHz. A comparison with other spectrum survey campaigns is provided

    Systematic NLTE study of the -2.6 < [Fe/H] < 0.2 F and G dwarfs in the solar neighbourhood. I. Stellar atmosphere parameters

    Full text link
    We present atmospheric parameters for 51 nearby FG dwarfs uniformly distributed over the -2.60 < [Fe/H] < +0.20 metallicity range that is suitable for the Galactic chemical evolution research. Lines of iron, Fe I and Fe II, were used to derive a homogeneous set of effective temperatures, surface gravities, iron abundances, and microturbulence velocities. We used high-resolution (R>60000) Shane/Hamilton and CFHT/ESPaDOnS observed spectra and non-local thermodynamic equilibrium (NLTE) line formation for Fe I and Fe II in the classical 1D model atmospheres. The spectroscopic method was tested with the 20 benchmark stars, for which there are multiple measurements of the infrared flux method (IRFM) Teff and their Hipparcos parallax error is < 10%. We found NLTE abundances from lines of Fe I and Fe II to be consistent within 0.06 dex for every benchmark star, when applying a scaling factor of S_H = 0.5 to the Drawinian rates of inelastic Fe+H collisions. The obtained atmospheric parameters were checked for each program star by comparing its position in the log g-Teff plane with the theoretical evolutionary track in the Yi et al. (2004) grid. Our final effective temperatures lie in between the T_IRFM scales of Alonso et al. (1996) and Casagrande et al. (2011), with a mean difference of +46 K and -51 K, respectively. NLTE leads to higher surface gravity compared with that for LTE. The shift in log g is smaller than 0.1 dex for stars with either [Fe/H] > -0.75, or Teff 4.20. NLTE analysis is crucial for the VMP turn-off and subgiant stars, for which the shift in log g between NLTE and LTE can be up to 0.5 dex. The obtained atmospheric parameters will be used in the forthcoming papers to determine NLTE abundances of important astrophysical elements from lithium to europium and to improve observational constraints on the chemo-dynamical models of the Galaxy evolution.Comment: 18 pages, 14 figures, accepted for publication in Ap

    Hybrid Satellite-Terrestrial Communication Networks for the Maritime Internet of Things: Key Technologies, Opportunities, and Challenges

    Get PDF
    With the rapid development of marine activities, there has been an increasing number of maritime mobile terminals, as well as a growing demand for high-speed and ultra-reliable maritime communications to keep them connected. Traditionally, the maritime Internet of Things (IoT) is enabled by maritime satellites. However, satellites are seriously restricted by their high latency and relatively low data rate. As an alternative, shore & island-based base stations (BSs) can be built to extend the coverage of terrestrial networks using fourth-generation (4G), fifth-generation (5G), and beyond 5G services. Unmanned aerial vehicles can also be exploited to serve as aerial maritime BSs. Despite of all these approaches, there are still open issues for an efficient maritime communication network (MCN). For example, due to the complicated electromagnetic propagation environment, the limited geometrically available BS sites, and rigorous service demands from mission-critical applications, conventional communication and networking theories and methods should be tailored for maritime scenarios. Towards this end, we provide a survey on the demand for maritime communications, the state-of-the-art MCNs, and key technologies for enhancing transmission efficiency, extending network coverage, and provisioning maritime-specific services. Future challenges in developing an environment-aware, service-driven, and integrated satellite-air-ground MCN to be smart enough to utilize external auxiliary information, e.g., sea state and atmosphere conditions, are also discussed

    Cooperative subcarrier sensing using antenna diversity based weighted virtual sub clustering

    Get PDF
    The idea of cooperation and the clustering amongst cognitive radios (CRs) has recently been focus of attention of research community, owing to its potential to improve performance of spectrum sensing (SS) schemes. This focus has led to the paradigm of cluster based cooperative spectrum sensing (CBCSS). In perspective of high date rate 4th generation wireless systems, which are characterized by orthogonal frequency division multiplexing (OFDM) and spatial diversity, there is a need to devise effective SS strategies. A novel CBCSS scheme is proposed for OFDM subcarrier detection in order to enable the non-contiguous OFDM (NC-OFDM) at the physical layer of CRs for efficient utilization of spectrum holes. Proposed scheme is based on the energy detection in MIMO CR network, using equal gain combiner as diversity combining technique, hard combining (AND, OR and Majority) rule as data fusion technique and antenna diversity based weighted clustering as virtual sub clustering algorithm. Results of proposed CBCSS are compared with conventional CBCSS scheme for AND, OR and Majority data fusion rules. Moreover the effects of antenna diversity, cooperation and cooperating clusters are also discussed

    Mobile Social Networking aided content dissemination in heterogeneous networks

    No full text
    Since more and more mobile applications are based on the proliferation of social information, the study of Mobile Social Net-works (MSNs) combines social sciences and wireless communications. Operating wireless networks more efficiently by exploiting social relationships between MSN users is an appealing but challenging option for network operators. An MSN-aided content dissemination technique is presented as a potential ex-tension of conventional cellular wireless net-works in order to satisfy growing data traffic. By allowing the MSN users to create a self-organized ad hoc network for spontaneously disseminating contents, the network operator may be able to reduce the operational costs and simultaneously achieve an improved network performance. In this paper, we first summarize the basic features of the MSN architecture, followed by a survey of the factors which may affect MSN-aided content dissemination. Using a case study, we demonstrate that one can save resources of the Base Station (BS) while substantially lowering content dissemination delay. Finally, other potential applications of MSN-aided content dissemination are introduced, and a range of future challenges are summarized

    A side-by-side comparison of Daya Bay antineutrino detectors

    Get PDF
    The Daya Bay Reactor Neutrino Experiment is designed to determine precisely the neutrino mixing angle θ13\theta_{13} with a sensitivity better than 0.01 in the parameter sin22θ13^22\theta_{13} at the 90% confidence level. To achieve this goal, the collaboration will build eight functionally identical antineutrino detectors. The first two detectors have been constructed, installed and commissioned in Experimental Hall 1, with steady data-taking beginning September 23, 2011. A comparison of the data collected over the subsequent three months indicates that the detectors are functionally identical, and that detector-related systematic uncertainties exceed requirements.Comment: 24 pages, 36 figure
    • …
    corecore