140 research outputs found

    Wideband Spectrum Sensing for Dynamic Spectrum Sharing

    Get PDF
    The proliferation of wireless devices grows exponentially, demanding more and more data communication capacity over wireless links. Radio spectrum is a scarce resource, and traditional wireless networks deployed by Mobile Network Operators (MNO) are based on an exclusive spectrum band allocation. However, underutilization of some licensed bands in time and geographic domains has been reported, especially in rural areas or areas away from high population density zones. This coexistence of increasingly high data communication needs and spectrum underutilization is an incomprehensible scenario. A more rational and efficient use of the spectrum is the possibility of Licensed Users (known as Primary Users – PU) to lease the spectrum, when not in use, to Unlicensed Users (known as Secondary Users – SU), or allowing the SU to opportunistically use the spectrum after sensing and verifying that the PU is idle. In this latter case, the SU must stop transmitting when the PU becomes active. This thesis addresses the spectrum sensing task, which is essential to provide dynamic spectrum sharing between PUs and SUs. We show that the Spectral Correlation Function (SCF) and the Spectral Coherence Function (SCoF) can provide a robust signal detection algorithm by exploiting the cyclostationary characteristics of the data communication signal. We enhance the most used algorithm to compute de SCF - the FAM (FFT Accumulation Method) algorithm – to efficiently compute the SCF in a local/zoomed region of the support ( ; ) plane (frequency/cycle frequency plane). This will provide the quick identification of spectral bands in use by PUs or free, in a wideband sampling scenario. Further, the characterization of the probability density of the estimates of the SCF and SCoF when only noise is present, using the FAM algorithm, will allow the definition of an adaptive threshold to develop a blind (with respect to the noise statistics) Constant False Alarm Rate (CFAR) detector (using the SCoF) and also a CFAR and a Constant Detection Rate (CDR) detector when that characterization is used to obtain an estimate of the background noise variance (using the SCF).A proliferação de dispositivos sem fios cresce de forma exponencial, exigindo cada vez mais capacidade de comunicação de dados através de ligações sem fios. O espectro radioelétrico é um recurso escasso, e as redes sem fios tradicionais implantadas pelos Operadores de Redes Móveis baseiam-se numa atribuição exclusiva de bandas do espectro. No entanto, tem sido relatada a subutilização de algumas bandas licenciadas quer ao longo do tempo, quer na sua localização geográfica, especialmente em áreas rurais, e em áreas longe de zonas de elevada densidade populacional. A coexistência da necessidade cada vez maior de comunicação de dados, e a subutilização do espectro é um cenário incompreensível. Uma utilização mais racional e eficiente do espectro pressupõe a possibilidade dos Utilizadores Licenciados (conhecidos como Utilizadores Primários – Primary Users - PU) alugarem o espectro, quando este não está a ser utilizado, a Utilizadores Não Licenciados (conhecidos como Utilizadores Secundários – Secondary Users - SU), ou permitir ao SU utilizar oportunisticamente o espectro após a deteção e verificação de que o PU está inativo. Neste último caso, o SU deverá parar de transmitir quando o PU ficar ativo. Nesta tese é abordada a tarefa de deteção espectral, que é essencial para proporcionar a partilha dinâmica do espectro entre PUs e SUs. Mostra-se que a Função de Correlação Espectral (Spectral Correlation Function - SCF) e a Função de Coerência Espectral (Spectral Coherence Function - SCoF) permitem o desenvolvimento de um algoritmo robusto de deteção de sinal, explorando as características ciclo-estacionárias dos sinais de comunicação de dados. Propõe-se uma melhoria ao algoritmo mais utilizado para cálculo da SCF – o método FAM (FFT Accumulation Method) - para permitir o cálculo mais eficiente da SCF numa região local/ampliada do plano de suporte / (plano de frequência/frequência de ciclo). Esta melhoria permite a identificação rápida de bandas espectrais em uso por PUs ou livres, num cenário de amostragem de banda larga. Adicionalmente, é feita a caracterização da densidade de probabilidade das estimativas da SCF e SCoF quando apenas o ruído está presente, o que permite a definição de um limiar adaptativo, para desenvolver um detetor de Taxa de Falso Alarme Constante (Constant False Alarm Rate – CFAR) sem conhecimento do ruído de fundo (usando a SCoF) e também um detetor CFAR e Taxa de Deteção Constante (Constant Detection Rate – CDR), quando se utiliza aquela caracterização para obter uma estimativa da variância do ruído de fundo (usando a SCF)

    Energy-detection based spectrum sensing for cognitive radio on a real-time SDR platform

    Get PDF
    There has been an increase in wireless applications due to the technology boom; consequently raising the level of radio spectrum demand. However, spectrum is a limited resource and cannot be infinitely subdivided to accommodate every application. At the same time, emerging wireless applications require a lot of bandwidth for operation, and have seen exponential growth in their bandwidth usage in recent years. The current spectrum allocation technique, proposed by the Federal Communications Commission (FCC) is a fixed allocation technique. This is inefficient as the spectrum is vacant during times when the primary user is not using the spectrum. This strain on the current available bandwidth has revealed signs of an upcoming spectrum crunch; hence the need to find a solution that satisfies the increasing spectrum demand, without compromising the performance of the applications. This work leverages on cognitive radio technology as a potential solution to the spectrum usage challenge. Cognitive radios have the ability to sense the spectrum and determine the presence or absence of the primary user in a particular subcarrier band. When the spectrum is vacant, a cognitive radio (secondary user) can opportunistically occupy the radio spectrum, optimizing the radio frequency band. The effectiveness of the cognitive radio is determined by the performance of the sensing techniques. Known spectrum-sensing techniques are reviewed, which include energy detection, entropy detection, matched-filter detection, and cyclostationary detection. In this dissertation, the energy sensing technique is examined. A real-time energy detector is developed on the Software-Defined Radio (SDR) testbed that is built with Universal Software Radio Peripheral (USRP) devices, and on the GNU Radio software platform. The noise floor of the system is first analysed to determine the detection threshold, which is obtained using the empirical cumulative distribution method. Simulations are carried out using MATrix LABoratory (MATLAB) to set a benchmark. In both simulations and the SDR development platform, an Orthogonal Frequency Division Multiplexing (OFDM) signal with Quadrature Phase Shift Keying (QPSK) modulation is generated and used as the test signal

    Spectrum Awareness in Cognitive Radio Systems

    Get PDF
    The paper addresses the issue of the Electromagnetic Environment Situational Awareness techniques. The main focus is put on sensing and the Radio Environment Map. These two dynamic techniques are described in detail. The Radio Environment Map is considered the essential part of the spectrum management system. It is described how the density and deployment of sensors affect the quality of maps and it is analysed which methods are the most suitable for map construction. Additionally, the paper characterizes several sensing methods

    A Comparative Study Of Spectrum Sensing Methods For Cognitive Radio Systems

    Get PDF
    With the increase of portable devices utilization and ever-growing demand for greater data rates in wireless transmission, an increasing demand for spectrum channels was observed since last decade. Conventionally, licensed spectrum channels are assigned for comparatively long time spans to the license holders who may not over time continuously use these channels, which creates an under-utilized spectrum. The inefficient utilization of inadequate wireless spectrum resources has motivated researchers to look for advanced and innovative technologies that enable an efficient use of the spectrum resources in a smart and efficient manner. The notion of Cognitive Radio technology was proposed to address the problem of spectrum inefficiency by using underutilized frequency bands in an opportunistic method. A cognitive radio system (CRS) is aware of its operational and geographical surroundings and is capable of dynamically and independently adjust its functioning. Thus, CRS functionality has to be addressed with smart sensing and intelligent decision making techniques. Therefore, spectrum sensing is one of the most essential CRS components. The few sensing techniques that have been proposed are complicated and come with the price of false detection under heavy noise and jamming scenarios. Other techniques that ensure better detection performance are very sophisticated and costly in terms of both processing and hardware. The objective of the thesis is to study and understand the three of the most basic spectrum sensing techniques i.e. energy detection, correlation based sensing, and matched filter sensing. Simulation platforms were developed for each of the three methods using GNU radio and python interpreted language. The simulated performances of the three methods have been analyzed through several test matrices and also were compared to observe and understand the corresponding strengths and weaknesses. These simulation results provide the understanding and base for the hardware implementation of spectrum sensing techniques and work towards a combined sensing approach with improved sensing performance with less complexity
    • …
    corecore