267 research outputs found

    Bayesian approach for the spectrum sensing mimo-cognitive radio network with presence of the uncertainty

    Get PDF
    A cognitive radio technique has the ability to learn. This system not only can observe the surrounding environment, adapt to environmental conditions, but also efficiently use the radio spectrum. This technique allows the secondary users (SUs) to employ the primary users (PUs) spectrum during the band is not being utilized by the user. Cognitive radio has three main steps: sensing of the spectrum, deciding and acting. In the spectrum sensing technique, the channel occupancy is determined with a spectrum sensing approach to detect unused spectrum. In the decision process, sensing results are evaluated and the decision process is then obtained based on these results. In the final process which is called the acting process, the scholar determines how to adjust the parameters of transmission to achieve great performance for the cognitive radio network

    Analysis and Design of Multiple-Antenna Cognitive Radios with Multiple Primary User Signals

    Full text link
    We consider multiple-antenna signal detection of primary user transmission signals by a secondary user receiver in cognitive radio networks. The optimal detector is analyzed for the scenario where the number of primary user signals is no less than the number of receive antennas at the secondary user. We first derive exact expressions for the moments of the generalized likelihood ratio test (GLRT) statistic, yielding approximations for the false alarm and detection probabilities. We then show that the normalized GLRT statistic converges in distribution to a Gaussian random variable when the number of antennas and observations grow large at the same rate. Further, using results from large random matrix theory, we derive expressions to compute the detection probability without explicit knowledge of the channel, and then particularize these expressions for two scenarios of practical interest: 1) a single primary user sending spatially multiplexed signals, and 2) multiple spatially distributed primary users. Our analytical results are finally used to obtain simple design rules for the signal detection threshold.Comment: Revised version (14 pages). Change in titl

    Multidimensional Index Modulation for 5G and Beyond Wireless Networks

    Get PDF
    This study examines the flexible utilization of existing IM techniques in a comprehensive manner to satisfy the challenging and diverse requirements of 5G and beyond services. After spatial modulation (SM), which transmits information bits through antenna indices, application of IM to orthogonal frequency division multiplexing (OFDM) subcarriers has opened the door for the extension of IM into different dimensions, such as radio frequency (RF) mirrors, time slots, codes, and dispersion matrices. Recent studies have introduced the concept of multidimensional IM by various combinations of one-dimensional IM techniques to provide higher spectral efficiency (SE) and better bit error rate (BER) performance at the expense of higher transmitter (Tx) and receiver (Rx) complexity. Despite the ongoing research on the design of new IM techniques and their implementation challenges, proper use of the available IM techniques to address different requirements of 5G and beyond networks is an open research area in the literature. For this reason, we first provide the dimensional-based categorization of available IM domains and review the existing IM types regarding this categorization. Then, we develop a framework that investigates the efficient utilization of these techniques and establishes a link between the IM schemes and 5G services, namely enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable low-latency communication (URLLC). Additionally, this work defines key performance indicators (KPIs) to quantify the advantages and disadvantages of IM techniques in time, frequency, space, and code dimensions. Finally, future recommendations are given regarding the design of flexible IM-based communication systems for 5G and beyond wireless networks.Comment: This work has been submitted to Proceedings of the IEEE for possible publicatio

    Spectral efficient compressive transmission framework for wireless communication systems

    Get PDF
    Increasing demand of high-speed data rate is leading to a challenging task to provide services to the users within exponentially growing market for wireless multimedia services. Subsequently, the available radio resources are becoming scarce because of different factors such as spectrum segmentation and dedicated frequency allocation to existing wireless standards. Exploring new techniques for enhancing the spectral efficiency in wireless communication has been an important research challenge. In this study, the enhancement of spectral efficiency of wireless communication systems is considered. A framework is proposed to implement the concept of compressive sampling (CS) for compressing the natural random signals. The performance of proposed framework is evaluated in the context of multiple input multiple output orthogonal frequency division multiplexing system. Simulation-based results show that 25% of resources can be saved by marginal trade-off with the quality of service (QoS) requirement applying CS to the natural random signals. Furthermore, it can be claimed that this QoS trade-off can be optimised with dynamic selection of random measurement matrices

    Thirty Years of Machine Learning: The Road to Pareto-Optimal Wireless Networks

    Full text link
    Future wireless networks have a substantial potential in terms of supporting a broad range of complex compelling applications both in military and civilian fields, where the users are able to enjoy high-rate, low-latency, low-cost and reliable information services. Achieving this ambitious goal requires new radio techniques for adaptive learning and intelligent decision making because of the complex heterogeneous nature of the network structures and wireless services. Machine learning (ML) algorithms have great success in supporting big data analytics, efficient parameter estimation and interactive decision making. Hence, in this article, we review the thirty-year history of ML by elaborating on supervised learning, unsupervised learning, reinforcement learning and deep learning. Furthermore, we investigate their employment in the compelling applications of wireless networks, including heterogeneous networks (HetNets), cognitive radios (CR), Internet of things (IoT), machine to machine networks (M2M), and so on. This article aims for assisting the readers in clarifying the motivation and methodology of the various ML algorithms, so as to invoke them for hitherto unexplored services as well as scenarios of future wireless networks.Comment: 46 pages, 22 fig

    Neural-network-aided automatic modulation classification

    Get PDF
    Automatic modulation classification (AMC) is a pattern matching problem which significantly impacts divers telecommunication systems, with significant applications in military and civilian contexts alike. Although its appearance in the literature is far from novel, recent developments in machine learning technologies have triggered an increased interest in this area of research. In the first part of this thesis, an AMC system is studied where, in addition to the typical point-to-point setup of one receiver and one transmitter, a second transmitter is also present, which is considered an interfering device. A convolutional neural network (CNN) is used for classification. In addition to studying the effect of interference strength, we propose a modification attempting to leverage some of the debilitating results of interference, and also study the effect of signal quantisation upon classification performance. Consequently, we assess a cooperative setting of AMC, namely one where the receiver features multiple antennas, and receives different versions of the same signal from the single-antenna transmitter. Through the combination of data from different antennas, it is evidenced that this cooperative approach leads to notable performance improvements over the established baseline. Finally, the cooperative scenario is expanded to a more complicated setting, where a realistic geographic distribution of four receiving nodes is modelled, and furthermore, the decision-making mechanism with regard to the identity of a signal resides in a fusion centre independent of the receivers, connected to them over finite-bandwidth backhaul links. In addition to the common concerns over classification accuracy and inference time, data reduction methods of various types (including “trained” lossy compression) are implemented with the objective of minimising the data load placed upon the backhaul links.Open Acces

    Convex Optimisation for Communication Systems

    No full text
    In this thesis new robust methods for the efficient sharing of the radio spectrum for underlay cognitive radio (CR) systems are developed. These methods provide robustness against uncertainties in the channel state information (CSI) that is available to the cognitive radios. A stochastic approach is taken and the robust spectrum sharing methods are formulated as convex optimisation problems. Three efficient spectrum sharing methods; power control, cooperative beamforming and conventional beamforming are studied in detail. The CR power control problem is formulated as a sum rate maximisation problem and transformed into a convex optimisation problem. A robust power control method under the assumption of partial CSI is developed and also transformed into a convex optimisation problem. A novel method of detecting and removing infeasible constraints from the power allocation problem is presented that results in considerably improved performance. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations. The concept of cooperative beamforming for spectrum sharing is applied to an underlay CR relay network. Distributed single antenna relay nodes are utilised to form a virtual antenna array that provides increased gains in capacity through cooperative beamforming. It is shown that the cooperative beamforming problems can be transformed into convex optimisation problems. New robust cooperative beamformers under the assumption of partial and imperfect CSI are developed and also transformed into convex optimisation problems. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations. Conventional beamforming to allow efficient spectrum sharing in an underlay CR system is studied. The beamforming problems are formulated and transformed into convex optimisation problems. New robust beamformers under the assumption of partial and imperfect CSI are developed and also transformed into convex optimisation problems. The performance of the proposed methods in Rayleigh fading channels is analysed by simulations
    • …
    corecore