83 research outputs found

    Spectrum Sensing and Resource Allocation for Multicarrier Cognitive Radio Systems Under Interference and Power Constraints

    Get PDF
    http://asp.eurasipjournals.com/content/2014/1/68International audienceMulticarrier waveforms have been commonly recognized as strong candidates for cognitive radio. In this paper, we study the dynamics of spectrum sensing and spectrum allocation functions in cognitive radio context using very practical signal models for the primary users (PUs), including the effects of power amplifier nonlinearities. We start by sensing the spectrum with energy detection-based wideband multichannel spectrum sensing algorithm and continue by investigating optimal resource allocation methods. Along the way, we examine the effects of spectral regrowth due to the inevitable power amplifier nonlinearities of the PU transmitters. The signal model includes frequency selective block-fading channel models for both secondary and primary transmissions. Filter bank-based wideband spectrum sensing techniques are applied for detecting spectral holes and filter bank-based multicarrier (FBMC) modulation is selected for transmission as an alternative multicarrier waveform to avoid the disadvantage of limited spectral containment of orthogonal frequency-division multiplexing (OFDM)-based multicarrier systems. The optimization technique used for the resource allocation approach considered in this study utilizes the information obtained through spectrum sensing and knowledge of spectrum leakage effects of the underlying waveforms, including a practical power amplifier model for the PU transmitter. This study utilizes a computationally efficient algorithm to maximize the SU link capacity with power and interference constraints. It is seen that the SU transmission capacity depends critically on the spectral containment of the PU waveform, and these effects are quantified in a case study using an 802.11-g WLAN scenario

    Resource Management in Multicarrier Based Cognitive Radio Systems

    Get PDF
    The ever-increasing growth of the wireless application and services affirms the importance of the effective usage of the limited radio spectrum. Existing spectrum management policies have led to significant spectrum under-utilization. Recent measurements showed that large range of the spectrum is sparsely used in both temporal and spatial manner. This conflict between the inefficient usage of the spectrum and the continuous evolution in the wireless communication calls upon the development of more flexible management policies. Cognitive radio (CR) with the dynamic spectrum access (DSA) is considered to be a key technology in making the best solution of this conflict by allowing a group of secondary users (SUs) to share the radio spectrum originally allocated to the primary user (PUs). The operation of CR should not negatively alter the performance of the PUs. Therefore, the interference control along with the highly dynamic nature of PUs activities open up new resource allocation problems in CR systems. The resource allocation algorithms should ensure an effective share of the temporarily available frequency bands and deliver the solutions in timely fashion to cope with quick changes in the network. In this dissertation, the resource management problem in multicarrier based CR systems is considered. The dissertation focuses on three main issues: 1) design of efficient resource allocation algorithms to allocate subcarriers and powers between SUs such that no harmful interference is introduced to PUs, 2) compare the spectral efficiency of using different multicarrier schemes in the CR physical layer, specifically, orthogonal frequency division multiplexing (OFDM) and filter bank multicarrier (FBMC) schemes, 3) investigate the impact of the different constraints values on the overall performance of the CR system. Three different scenarios are considered in this dissertation, namely downlink transmission, uplink transmission, and relayed transmission. For every scenario, the optimal solution is examined and efficient sub-optimal algorithms are proposed to reduce the computational burden of obtaining the optimal solution. The suboptimal algorithms are developed by separate the subcarrier and power allocation into two steps in downlink and uplink scenarios. In the relayed scenario, dual decomposition technique is used to obtain an asymptotically optimal solution, and a joint heuristic algorithm is proposed to find the suboptimal solution. Numerical simulations show that the proposed suboptimal algorithms achieve a near optimal performance and perform better than the existing algorithms designed for cognitive and non-cognitive systems. Eventually, the ability of FBMC to overcome the OFDM drawbacks and achieve more spectral efficiency is verified which recommends the consideration of FBMC in the future CR systems.El crecimiento continuo de las aplicaciones y servicios en sistemas inal´ambricos, indica la importancia y necesidad de una utilizaci´on eficaz del espectro radio. Las pol´ıticas actuales de gesti´on del espectro han conducido a una infrautilizaci´on del propio espectro radioel´ectrico. Recientes mediciones en diferentes entornos han mostrado que gran parte del espectro queda poco utilizado en sus ambas vertientes, la temporal, y la espacial. El permanente conflicto entre el uso ineficiente del espectro y la evoluci´on continua de los sistemas de comunicaci´on inal´ambrica, hace que sea urgente y necesario el desarrollo de esquemas de gesti´on del espectro m´as flexibles. Se considera el acceso din´amico (DSA) al espectro en los sistemas cognitivos como una tecnolog´ıa clave para resolver este conflicto al permitir que un grupo de usuarios secundarios (SUs) puedan compartir y acceder al espectro asignado inicialmente a uno o varios usuarios primarios (PUs). Las operaciones de comunicaci´on llevadas a cabo por los sistemas radio cognitivos no deben en ning´un caso alterar (interferir) los sistemas primarios. Por tanto, el control de la interferencia junto al gran dinamismo de los sistemas primarios implica nuevos retos en el control y asignaci´on de los recursos radio en los sistemas de comunicaci´on CR. Los algoritmos de gesti´on y asignaci´on de recursos (Radio Resource Management-RRM) deben garantizar una participaci´on efectiva de las bandas con frecuencias disponibles temporalmente, y ofrecer en cada momento oportunas soluciones para hacer frente a los distintos cambios r´apidos que influyen en la misma red. En esta tesis doctoral, se analiza el problema de la gesti´on de los recursos radio en sistemas multiportadoras CR, proponiendo varias soluciones para su uso eficaz y coexistencia con los PUs. La tesis en s´ı, se centra en tres l´ıneas principales: 1) el dise˜no de algoritmos eficientes de gesti´on de recursos para la asignaci´on de sub-portadoras y distribuci´on de la potencia en sistemas segundarios, evitando asi cualquier interferencia que pueda ser perjudicial para el funcionamiento normal de los usuarios de la red primaria, 2) analizar y comparar la eficiencia espectral alcanzada a la hora de utilizar diferentes esquema de transmisi´on multiportadora en la capa f´ısica del sistema CR, espec´ıficamente en sistemas basados en OFDM y los basados en banco de filtros multiportadoras (Filter bank Multicarrier-FBMC), 3) investigar el impacto de las diferentes limitaciones en el rendimiento total del sistema de CR. Los escenarios considerados en esta tesis son tres, es decir; modo de transmisi´on descendente (downlink), modo de transmisi´on ascendente (uplink), y el modo de transmisi´on ”Relay”. En cada escenario, la soluci´on ´optima es examinada y comparada con algoritmos sub- ´optimos que tienen como objetivo principal reducir la carga computacional. Los algoritmos sub-´optimos son llevados a cabo en dos fases mediante la separaci´on del propio proceso de distribuci´on de subportadoras y la asignaci´on de la potencia en los modos de comunicaci´on descendente (downlink), y ascendente (uplink). Para los entornos de tipo ”Relay”, se ha utilizado la t´ecnica de doble descomposici´on (dual decomposition) para obtener una soluci´on asint´oticamente ´optima. Adem´as, se ha desarrollado un algoritmo heur´ıstico para poder obtener la soluci´on ´optima con un reducido coste computacional. Los resultados obtenidos mediante simulaciones num´ericas muestran que los algoritmos sub-´optimos desarrollados logran acercarse a la soluci´on ´optima en cada uno de los entornos analizados, logrando as´ı un mayor rendimiento que los ya existentes y utilizados tanto en entornos cognitivos como no-cognitivos. Se puede comprobar en varios resultados obtenidos en la tesis la superioridad del esquema multiportadora FBMC sobre los sistemas basados en OFDM para los entornos cognitivos, causando una menor interferencia que el OFDM en los sistemas primarios, y logrando una mayor eficiencia espectral. Finalmente, en base a lo analizado en esta tesis, podemos recomendar al esquema multiportadora FBMC como una id´onea y potente forma de comunicaci´on para las futuras redes cognitivas

    Enhanced Spectrum Sensing Techniques for Cognitive Radio Systems

    Get PDF
    Due to the rapid growth of new wireless communication services and applications, much attention has been directed to frequency spectrum resources. Considering the limited radio spectrum, supporting the demand for higher capacity and higher data rates is a challenging task that requires innovative technologies capable of providing new ways of exploiting the available radio spectrum. Cognitive radio (CR), which is among the core prominent technologies for the next generation of wireless communication systems, has received increasing attention and is considered a promising solution to the spectral crowding problem by introducing the notion of opportunistic spectrum usage. Spectrum sensing, which enables CRs to identify spectral holes, is a critical component in CR technology. Furthermore, improving the efficiency of the radio spectrum use through spectrum sensing and dynamic spectrum access (DSA) is one of the emerging trends. In this thesis, we focus on enhanced spectrum sensing techniques that provide performance gains with reduced computational complexity for realistic waveforms considering radio frequency (RF) impairments, such as noise uncertainty and power amplifier (PA) non-linearities. The first area of study is efficient energy detection (ED) methods for spectrum sensing under non-flat spectral characteristics, which deals with relatively simple methods for improving the detection performance. In realistic communication scenarios, the spectrum of the primary user (PU) is non-flat due to non-ideal frequency responses of the devices and frequency selective channel conditions. Weighting process with fast Fourier transform (FFT) and analysis filter bank (AFB) based multi-band sensing techniques are proposed for overcoming the challenge of non-flat characteristics. Furthermore, a sliding window based spectrum sensing approach is addressed to detect a re-appearing PU that is absent in one time and present in other time. Finally, the area under the receiver operating characteristics curve (AUC) is considered as a single-parameter performance metric and is derived for all the considered scenarios. The second area of study is reduced complexity energy and eigenvalue based spectrum sensing techniques utilizing frequency selectivity. More specifically, novel spectrum sensing techniques, which have relatively low computational complexity and are capable of providing accurate and robust performance in low signal-to-noise ratio (SNR) with noise uncertainty, as well as in the presence of frequency selectivity, are proposed. Closed-form expressions are derived for the corresponding probability of false alarm and probability of detection under frequency selectivity due the primary signal spectrum and/or the transmission channel. The offered results indicate that the proposed methods provide quite significant saving in complexity, e.g., 78% reduction in the studied example case, whereas their detection performance is improved both in the low SNR and under noise uncertainty. Finally, a new combined spectrum sensing and resource allocation approach for multicarrier radio systems is proposed. The main contribution of this study is the evaluation of the CR performance when using wideband spectrum sensing methods in combination with water-filling and power interference (PI) based resource allocation algorithms in realistic CR scenarios. Different waveforms, such as cyclic prefix based orthogonal frequency division multiplexing (CP-OFDM), enhanced orthogonal frequency division multiplexing (E-OFDM) and filter bank based multicarrier (FBMC), are considered with PA nonlinearity type RF impairments to see the effects of spectral leakage on the spectrum sensing and resource allocation performance. It is shown that AFB based spectrum sensing techniques and FBMC waveforms with excellent spectral containment properties have clearly better performance compared to the traditional FFT based spectrum sensing techniques with the CP-OFDM. Overall, the investigations in this thesis provide novel spectrum sensing techniques for overcoming the challenge of noise uncertainty with reduced computational complexity. The proposed methods are evaluated under realistic signal models

    Multiantenna Interference Mitigation Schemes and Resource Allocation for Cognitive Radio

    Get PDF
    Maximum and efficient utilization of available resources has been a central theme of research on various areas of science and engineering. Wireless communication is not an exception to this. With the rapid growth of wireless communication applications, radio frequency spectrum has become a valuable commodity. Supporting very high demands for data rate and throughput has become a challenging problem which requires innovative solutions. Dynamic spectrum sharing (DSS) based cognitive radio (CR) is envisioned as a promising technology for future wireless communication systems, such as fifth generation (5G) further development and sixth generation (6G). Extensive research has been done in the areas of CRs and it is considered to mitigate the spectral crowding problem by introducing the notion of opportunistic spectrum usage. Spectrum sensing, which enables CRs to identify spectral holes, is a critical component in CR technology. Furthermore, improving the efficiency of the radio spectrum use through spectrum sensing and dynamic spectrum access (DSA) is one of the emerging trends. In the first part of this thesis, we focus on enhancing the spectrum usage of CR’s using interference cancellation methods that provides considerable performance gains with realistic computational complexity, especially, in the context of the widely used multicarrier waveforms. The primary focus is on interference rejection combining (IRC) methods, applied to the black-space cognitive radio (BS-CR). Earlier studies on the BS-CR in the literature were focused on using CRs as repeaters for the primary transmitter to guarantee that the CR is not causing significant interference to nearby primary users’ receivers. This kind of approaches are transmitter-centric in nature. In this thesis, receiver-centric approaches such as multi-antenna diversity combining, especially enhanced IRC methods, are considered and evaluated. IRC methods have been widely studied and adopted in several practical wireless communication systems. We focus on developing such BS-CR schemes under strong interference conditions, which has not been studied in the CR literature so far. Spatial covariance matrix estimation under mobility and high carrier frequencies is found to be the most critical part of such scheme. Algorithms and methods to mitigate these effects are developed in this thesis and they are evaluated under realistic BS-CR receiver operating conditions. We use sample covariance estimation approach with silent gaps in the CR transmisison. Covariance interpolation between silent gaps improves greatly the robustness with time-varying channels. Good link performance can be reached with low mobility at carrier frequency considered for the TV white-spaced case. The proposed BS-CR scheme could be feasible at below 6 GHz frequencies with pedestrian mobilities. The second part of this thesis investigates the effect of radio frequency (RF) impairments on the performance of the cognitive wireless communication. There are various unavoidable imperfections, mainly due to the limitations of analog high-frequency transmitter and receiver circuits. These imperfections include power amplifier (PA) non-linearities, receiver nonlinearities, and carrier frequency offset (CFO), which are considered in this study. These effects lead to significant signal distortion and, as a result of this, the wireless link quality may deteriorate. In multicarrier communications such signal distortions may lead to additional interference, and it is important to evaluate their effects on spectrum sensing quality and on the performance of the proposed BS-CR scheme. This part of the thesis provides critical analysis and insights into such issues caused by RF imperfections and demonstrates the need for designing proper compensation techniques required to avoid/reduce such degradations. It is found that the transmitter’s PA nonlinearities affect in the same way as in basic OFDM systems and BS-CR receiver’s linearity requirements are similar to those for advanced DSP-intensive software defined radios. The CR receiver’s CFO with respect to the PU has the most critical effect. However, synchronizing the CR with the needed high accuracy is considered achievable due to the PU signal’s high-power level. The final part of the thesis briefly looks at alternate waveforms and techniques that can be used in CRs. The filter bank multicarrier (FBMC) waveforms are considered as an alternative to the widely used OFDM schemes. Here the core idea is interference avoidance, targeting to reduce the interference leakage between CRs and the primary systems, by means of using a waveform with good spectrum localization properties. FBMC system’s performance is compared with OFDM based system in the context of CRs. The performance is compared from a combined spectrum sensing and resource allocation point of view through simulations. It is found that well-localized CR waveforms improve the CR link capacity, but with poorly localized primary signals, these possibilities are rather limited

    Spectrum Adaptation in Cognitive Radio Systems with Operating Constraints

    Get PDF
    The explosion of high-data-rate-demanding wireless applications such as smart-phones and wireless Internet access devices, together with growth of existing wireless services, are creating a shortage of the scarce Radio Frequency (RF) spectrum. However, several spectrum measurement campaigns revealed that current spectrum usage across time and frequency is inefficient, creating the artificial shortage of the spectrum because of the traditional exclusive command-and-control model of using the spectrum. Therefore, a new concept of Cognitive Radio (CR) has been emerging recently in which unlicensed users temporarily borrow spectrum from the licensed Primary Users (PU) based on the Dynamic Spectrum Access (DSA) technique that is also known as the spectrum sharing concept. A CR is an intelligent radio system based on the Software Defined Radio platform with artificial intelligence capability which can learn, adapt, and reconfigure through interaction with the operating environment. A CR system will revolutionize the way people share the RF spectrum, lowering harmful interference to the licensed PU of the spectrum, fostering innovative DSA technology and giving people more choices when it comes to using the wireless-communication-dependent applications without having any spectrum congestion problems. A key technical challenge for enabling secondary access to the licensed spectrum adaptation is to ensure that the CR does not interfere with the licensed incumbent users. However, incumbent user behavior is dynamic and requires CR systems to adapt this behavior in order to maintain smooth information transmission. In this context, the objective of this dissertation is to explore design issues for CR systems focusing on adaptation of physical layer parameters related to spectrum sensing, spectrum shaping, and rate/power control. Specifically, this dissertation discusses dynamic threshold adaptation for energy detector spectrum sensing, spectrum allocation and power control in Orthogonal Frequency Division Multiplexing-(OFDM-)based CR with operating constraints, and adjacent band interference suppression techniques in turbo-coded OFDM-based CR systems

    Channel estimation techniques for filter bank multicarrier based transceivers for next generation of wireless networks

    Get PDF
    A dissertation submitted to Faculty of Engineering and the Built Environment, University of the Witwatersrand, Johannesburg, in fulfillment of the requirements for the degree of Master of Science in Engineering (Electrical and Information Engineering), August 2017The fourth generation (4G) of wireless communication system is designed based on the principles of cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) where the cyclic prefix (CP) is used to combat inter-symbol interference (ISI) and inter-carrier interference (ICI) in order to achieve higher data rates in comparison to the previous generations of wireless networks. Various filter bank multicarrier systems have been considered as potential waveforms for the fast emerging next generation (xG) of wireless networks (especially the fifth generation (5G) networks). Some examples of the considered waveforms are orthogonal frequency division multiplexing with offset quadrature amplitude modulation based filter bank, universal filtered multicarrier (UFMC), bi-orthogonal frequency division multiplexing (BFDM) and generalized frequency division multiplexing (GFDM). In perfect reconstruction (PR) or near perfect reconstruction (NPR) filter bank designs, these aforementioned FBMC waveforms adopt the use of well-designed prototype filters (which are used for designing the synthesis and analysis filter banks) so as to either replace or minimize the CP usage of the 4G networks in order to provide higher spectral efficiencies for the overall increment in data rates. The accurate designing of the FIR low-pass prototype filter in NPR filter banks results in minimal signal distortions thus, making the analysis filter bank a time-reversed version of the corresponding synthesis filter bank. However, in non-perfect reconstruction (Non-PR) the analysis filter bank is not directly a time-reversed version of the corresponding synthesis filter bank as the prototype filter impulse response for this system is formulated (in this dissertation) by the introduction of randomly generated errors. Hence, aliasing and amplitude distortions are more prominent for Non-PR. Channel estimation (CE) is used to predict the behaviour of the frequency selective channel and is usually adopted to ensure excellent reconstruction of the transmitted symbols. These techniques can be broadly classified as pilot based, semi-blind and blind channel estimation schemes. In this dissertation, two linear pilot based CE techniques namely the least square (LS) and linear minimum mean square error (LMMSE), and three adaptive channel estimation schemes namely least mean square (LMS), normalized least mean square (NLMS) and recursive least square (RLS) are presented, analyzed and documented. These are implemented while exploiting the near orthogonality properties of offset quadrature amplitude modulation (OQAM) to mitigate the effects of interference for two filter bank waveforms (i.e. OFDM/OQAM and GFDM/OQAM) for the next generation of wireless networks assuming conditions of both NPR and Non-PR in slow and fast frequency selective Rayleigh fading channel. Results obtained from the computer simulations carried out showed that the channel estimation schemes performed better in an NPR filter bank system as compared with Non-PR filter banks. The low performance of Non-PR system is due to the amplitude distortion and aliasing introduced from the random errors generated in the system that is used to design its prototype filters. It can be concluded that RLS, NLMS, LMS, LMMSE and LS channel estimation schemes offered the best normalized mean square error (NMSE) and bit error rate (BER) performances (in decreasing order) for both waveforms assuming both NPR and Non-PR filter banks. Keywords: Channel estimation, Filter bank, OFDM/OQAM, GFDM/OQAM, NPR, Non-PR, 5G, Frequency selective channel.CK201

    Rapid prototyping and validation of FS-FBMC dynamic spectrum radio with simulink and ZynqSDR

    Get PDF
    This paper presents the research carried out in developing and targeting a novel real-time Dynamic Spectrum Access (DSA) Frequency Spread Filter Bank Multicarrier (FS-FBMC) transmitter prototype to programmable ‘ZynqSDR’ Software Defined Radio (SDR) hardware, and introduces a series of experiments used to validate the design’s ‘cognitive’ DSA capabilities. This transmitter is a proof of concept, that uses DSA techniques to enable Secondary Users (SUs) to access the band traditionally used for FM Radio broadcasting (88-108 MHz), and establish data communication channels in vacant parts of the FM Radio Primary User (PU) spectrum using a multicarrier modulation scheme with a Non Contiguous (NC) channel mask. Once implemented on the hardware, the transmitter is subjected to various FM Radio environments sampled from around Central Scotland, and it is demonstrated that it can dynamically adapt its NC transmitter mask in real time to protect the FM Radio signals it detects. A video is presented of this dynamic on-hardware spectral reconfiguration, and the reader is encouraged to view the video to appreciate the responsiveness of the design. An investigation into potential FBMC guardband sizes is carried out, with initial findings indicating a guardband of 200 kHz (either side of an FM Radio station) is required in order to prevent interference with the PUs. This paper also demonstrates the capabilities of the MATLAB®/ Simulink ZynqSDR workflow, and provides a case study and reference design that we feel other researchers working in this field can benefit from
    corecore