7,059 research outputs found

    Spectrum of Fractal Interpolation Functions

    Full text link
    In this paper we compute the Fourier spectrum of the Fractal Interpolation Functions FIFs as introduced by Michael Barnsley. We show that there is an analytical way to compute them. In this paper we attempt to solve the inverse problem of FIF by using the spectru

    Weakly Self Affine Functions and Applications in Signal Processing

    Get PDF
    International audienceWe study a class of functions, called weakly self afire functions, which are a generalization of Fractal Interpolation Functions where the concentrate ratios are allowed to envolve in scale. We show how to compute the milifractal spectrum of such functions, and mention an application to the multifractal segmentation of signals

    Synthetic Turbulence, Fractal Interpolation and Large-Eddy Simulation

    Full text link
    Fractal Interpolation has been proposed in the literature as an efficient way to construct closure models for the numerical solution of coarse-grained Navier-Stokes equations. It is based on synthetically generating a scale-invariant subgrid-scale field and analytically evaluating its effects on large resolved scales. In this paper, we propose an extension of previous work by developing a multiaffine fractal interpolation scheme and demonstrate that it preserves not only the fractal dimension but also the higher-order structure functions and the non-Gaussian probability density function of the velocity increments. Extensive a-priori analyses of atmospheric boundary layer measurements further reveal that this Multiaffine closure model has the potential for satisfactory performance in large-eddy simulations. The pertinence of this newly proposed methodology in the case of passive scalars is also discussed

    Energy Dissipation in Fractal-Forced Flow

    Get PDF
    The rate of energy dissipation in solutions of the body-forced 3-d incompressible Navier-Stokes equations is rigorously estimated with a focus on its dependence on the nature of the driving force. For square integrable body forces the high Reynolds number (low viscosity) upper bound on the dissipation is independent of the viscosity, consistent with the existence of a conventional turbulent energy cascade. On the other hand when the body force is not square integrable, i.e., when the Fourier spectrum of the force decays sufficiently slowly at high wavenumbers, there is significant direct driving at a broad range of spatial scales. Then the upper limit for the dissipation rate may diverge at high Reynolds numbers, consistent with recent experimental and computational studies of "fractal-forced'' turbulence.Comment: 14 page

    Anomalous diffusion in the dynamics of complex processes

    Full text link
    Anomalous diffusion, process in which the mean-squared displacement of system states is a non-linear function of time, is usually identified in real stochastic processes by comparing experimental and theoretical displacements at relatively small time intervals. This paper proposes an interpolation expression for the identification of anomalous diffusion in complex signals for the cases when the dynamics of the system under study reaches a steady state (large time intervals). This interpolation expression uses the chaotic difference moment (transient structural function) of the second order as an average characteristic of displacements. A general procedure for identifying anomalous diffusion and calculating its parameters in real stochastic signals, which includes the removal of the regular (low-frequency) components from the source signal and the fitting of the chaotic part of the experimental difference moment of the second order to the interpolation expression, is presented. The procedure was applied to the analysis of the dynamics of magnetoencephalograms, blinking fluorescence of quantum dots, and X-ray emission from accreting objects. For all three applications, the interpolation was able to adequately describe the chaotic part of the experimental difference moment, which implies that anomalous diffusion manifests itself in these natural signals. The results of this study make it possible to broaden the range of complex natural processes in which anomalous diffusion can be identified. The relation between the interpolation expression and a diffusion model, which is derived in the paper, allows one to simulate the chaotic processes in the open complex systems with anomalous diffusion.Comment: 47 pages, 15 figures; Submitted to Physical Review
    • …
    corecore