3,516 research outputs found

    Spectrum Auction Framework for Access Allocation in Cognitive Radio Networks

    Get PDF
    In cognitive radio networks, there are two categories of networks on different channels: primary networks, which have high-priority access, and secondary networks, which have low-priority access. We develop an auction-based framework that allows networks to bid for primary and secondary access based on their utilities and traffic demands. The bids are used to solve the access allocation problem, which is that of selecting the primary and secondary networks on each channel either to maximize the auctioneer’s revenue or to maximize the social welfare of the bidding networks, while enforcing incentive compatibility. We first consider the case when the bids of a network depend on which other networks it will share channels with. When there is only one secondary network on each channel, we design an optimal polynomial- time algorithm for the access allocation problem based on reduction to a maximum matching problem in weighted graphs. When there can be two or more secondary networks on a channel, we show that the optimal access allocation problem is NP-complete. Next, we consider the case when the bids of a network are independent of which other networks it will share channels with. We design a polynomial-time dynamic programming algorithm to optimally solve the access allocation problem when the number of possible cardinalities of the set of secondary networks on a channel is upper-bounded. Finally, we design a polynomial-time algorithm that approximates the access allocation problem within a factor of 2 when the above upper bound does not exist

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    Coopetition spectrum trading in cognitive radio networks

    Get PDF
    Spectrum trading is a promising method to improve spectrum usage efficiency. Several issues must be addressed, however, to enable spectrum trading that goes beyond conservative trading idle bands and achieve cooperation between primary and secondary users. In this paper, we argue that spectrum holes should be explicitly endogenous and negotiated by spectrum trading participants. To this end, we proposed an a Vickery auction based, coopetive framework to foster cooperation, while allowing competition for spectrum sharing. Incentive schemes and penalty for revocable spectrum are proposed to increase the spectrum access opportunities for SUs while protecting PUs spectrum value. A simultation study shows that the proposed framework outperforms conservative trading approaches, in a variety of scenarios with different levels of cooperation and bidding strategies. © 2013 IEEE

    Distributed Channel Assignment in Cognitive Radio Networks: Stable Matching and Walrasian Equilibrium

    Full text link
    We consider a set of secondary transmitter-receiver pairs in a cognitive radio setting. Based on channel sensing and access performances, we consider the problem of assigning channels orthogonally to secondary users through distributed coordination and cooperation algorithms. Two economic models are applied for this purpose: matching markets and competitive markets. In the matching market model, secondary users and channels build two agent sets. We implement a stable matching algorithm in which each secondary user, based on his achievable rate, proposes to the coordinator to be matched with desirable channels. The coordinator accepts or rejects the proposals based on the channel preferences which depend on interference from the secondary user. The coordination algorithm is of low complexity and can adapt to network dynamics. In the competitive market model, channels are associated with prices and secondary users are endowed with monetary budget. Each secondary user, based on his utility function and current channel prices, demands a set of channels. A Walrasian equilibrium maximizes the sum utility and equates the channel demand to their supply. We prove the existence of Walrasian equilibrium and propose a cooperative mechanism to reach it. The performance and complexity of the proposed solutions are illustrated by numerical simulations.Comment: submitted to IEEE Transactions on Wireless Communicaitons, 13 pages, 10 figures, 4 table

    NOMA based resource allocation and mobility enhancement framework for IoT in next generation cellular networks

    Get PDF
    With the unprecedented technological advances witnessed in the last two decades, more devices are connected to the internet, forming what is called internet of things (IoT). IoT devices with heterogeneous characteristics and quality of experience (QoE) requirements may engage in dynamic spectrum market due to scarcity of radio resources. We propose a framework to efficiently quantify and supply radio resources to the IoT devices by developing intelligent systems. The primary goal of the paper is to study the characteristics of the next generation of cellular networks with non-orthogonal multiple access (NOMA) to enable connectivity to clustered IoT devices. First, we demonstrate how the distribution and QoE requirements of IoT devices impact the required number of radio resources in real time. Second, we prove that using an extended auction algorithm by implementing a series of complementary functions, enhance the radio resource utilization efficiency. The results show substantial reduction in the number of sub-carriers required when compared to conventional orthogonal multiple access (OMA) and the intelligent clustering is scalable and adaptable to the cellular environment. Ability to move spectrum usages from one cluster to other clusters after borrowing when a cluster has less user or move out of the boundary is another soft feature that contributes to the reported radio resource utilization efficiency. Moreover, the proposed framework provides IoT service providers cost estimation to control their spectrum acquisition to achieve required quality of service (QoS) with guaranteed bit rate (GBR) and non-guaranteed bit rate (Non-GBR)
    • …
    corecore