36,161 research outputs found

    Enabling rural broadband via TV "white space"

    Get PDF
    The use of multiple frequency bands within a wireless network allows the advantages of each band to be exploited. In this paper we discuss how HopScotch, a rural wireless broadband access test bed running in the Scottish Highlands and Islands, uses both 5 GHz and ultra high frequency "white space" bands to offer large data rates and expansive coverage whilst reducing the number of base stations or required transmission power. This reduction in energy consumption allows HopScotch to provide a low-cost and green solution for rural broadband delivery

    Rate Optimal design of a Wireless Backhaul Network using TV White Space

    Full text link
    The penetration of wireless broadband services in remote areas has primarily been limited due to the lack of economic incentives that service providers encounter in sparsely populated areas. Besides, wireless backhaul links like satellite and microwave are either expensive or require strict line of sight communication making them unattractive. TV white space channels with their desirable radio propagation characteristics can provide an excellent alternative for engineering backhaul networks in areas that lack abundant infrastructure. Specifically, TV white space channels can provide "free wireless backhaul pipes" to transport aggregated traffic from broadband sources to fiber access points. In this paper, we investigate the feasibility of multi-hop wireless backhaul in the available white space channels by using noncontiguous Orthogonal Frequency Division Multiple Access (NC-OFDMA) transmissions between fixed backhaul towers. Specifically, we consider joint power control, scheduling and routing strategies to maximize the minimum rate across broadband towers in the network. Depending on the population density and traffic demands of the location under consideration, we discuss the suitable choice of cell size for the backhaul network. Using the example of available TV white space channels in Wichita, Kansas (a small city located in central USA), we provide illustrative numerical examples for designing such wireless backhaul network

    TVWS policies to enable efficient spectrum sharing

    Get PDF
    The transition from analogue to the Digital Terrestrial Television (DTV) in Europe is planned to be completed by the end of the year 2012. The DTV spectrum allocation is such that there are a number of TV channels which cannot be used for additional high power broadcast transmitters due to mutual interference and hence are left unused within a given geographical location, i.e. the TV channels are geographically interleaved. The use of geographically interleaved spectrum provides for the so-called TV white spaces (TVWS) an opportunity for deploying new wireless services. The main objective of this paper is to present the spectrum policies that are suitable for TVWS at European level, identified within the COGEU project. The COGEU project aims the efficient exploitation of the geographical interleaved spectrum (TVWS). COGEU is an ICT collaborative project supported by the European Commission within the 7th Framework Programme. Nine partners from seven EU countries representing academia, research institutes and industry are involved in the project. The COGEU project is a composite of technical, business, and regulatory/policy domains, with the objective of taking advantage of the TV digital switchover by developing cognitive radio systems that leverage the favorable propagation characteristics of the UHF broadcast spectrum through the introduction and promotion of real-time secondary spectrum trading and the creation of new spectrum commons regimes. COGEU will also define new methodologies for compliance testing and certification of TVWS equipment to ensure non-interference coexistence with the DVB-T European standard. The innovation brought by COGEU is the combination of cognitive access to TV white spaces with secondary spectrum trading mechanisms.telecommunications,spectrum management,secondary spectrum market,regulation,TV white spaces,cognitive radio

    Interference Alignment for Cognitive Radio Communications and Networks: A Survey

    Get PDF
    © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).Interference alignment (IA) is an innovative wireless transmission strategy that has shown to be a promising technique for achieving optimal capacity scaling of a multiuser interference channel at asymptotically high-signal-to-noise ratio (SNR). Transmitters exploit the availability of multiple signaling dimensions in order to align their mutual interference at the receivers. Most of the research has focused on developing algorithms for determining alignment solutions as well as proving interference alignment’s theoretical ability to achieve the maximum degrees of freedom in a wireless network. Cognitive radio, on the other hand, is a technique used to improve the utilization of the radio spectrum by opportunistically sensing and accessing unused licensed frequency spectrum, without causing harmful interference to the licensed users. With the increased deployment of wireless services, the possibility of detecting unused frequency spectrum becomes diminished. Thus, the concept of introducing interference alignment in cognitive radio has become a very attractive proposition. This paper provides a survey of the implementation of IA in cognitive radio under the main research paradigms, along with a summary and analysis of results under each system model.Peer reviewe

    Emerging Technologies and Access to Spectrum Resources: the Case of Short-Range Systems

    Get PDF
    Traditional regulatory arrangements have constrained access to radio frequency spectrum. This has resulted in artificial scarcity of spectrum. The paper addresses the issue of whether technological developments in short-range systems (e.g. cognitive radios and ultra wideband) might promote access to spectrum - possibly using market mechanisms such as trading - and reduce spectrum shortages.spectrum policy, spectrum access, emerging spectrum-using technology, Telecommunications, regulation, infrastructure
    • 

    corecore