2,475 research outputs found

    Enforcement in Dynamic Spectrum Access Systems

    Get PDF
    The spectrum access rights granted by the Federal government to spectrum users come with the expectation of protection from harmful interference. As a consequence of the growth of wireless demand and services of all types, technical progress enabling smart agile radio networks, and on-going spectrum management reform, there is both a need and opportunity to use and share spectrum more intensively and dynamically. A key element of any framework for managing harmful interference is the mechanism for enforcement of those rights. Since the rights to use spectrum and to protection from harmful interference vary by band (licensed/unlicensed, legacy/newly reformed) and type of use/users (primary/secondary, overlay/underlay), it is reasonable to expect that the enforcement mechanisms may need to vary as well.\ud \ud In this paper, we present a taxonomy for evaluating alternative mechanisms for enforcing interference protection for spectrum usage rights, with special attention to the potential changes that may be expected from wider deployment of Dynamic Spectrum Access (DSA) systems. Our exploration of how the design of the enforcement regime interacts with and influences the incentives of radio operators under different rights regimes and market scenarios is intended to assist in refining thinking about appropriate access rights regimes and how best to incentivize investment and growth in more efficient and valuable uses of the radio frequency spectrum

    Market Based Approaches for Dynamic Spectrum Assignment

    Get PDF
    Abstract—Much of the technical literature on spectrum sharing has been on developing technologies and systems for non-cooperative) opportunistic use. In this paper, we situate this approach to secondary spectrum use in a broader context, one that includes cooperative approaches to Dynamic Spectrum Access (DSA). In this paper, we introduce readers to this broader approach to DSA by contrasting it with non-cooperative sharing (opportunistic use), surveying relevant literature, and suggesting future directions for researc

    Investment and Pricing with Spectrum Uncertainty: A Cognitive Operator's Perspective

    Full text link
    This paper studies the optimal investment and pricing decisions of a cognitive mobile virtual network operator (C-MVNO) under spectrum supply uncertainty. Compared with a traditional MVNO who often leases spectrum via long-term contracts, a C-MVNO can acquire spectrum dynamically in short-term by both sensing the empty "spectrum holes" of licensed bands and dynamically leasing from the spectrum owner. As a result, a C-MVNO can make flexible investment and pricing decisions to match the current demands of the secondary unlicensed users. Compared to dynamic spectrum leasing, spectrum sensing is typically cheaper, but the obtained useful spectrum amount is random due to primary licensed users' stochastic traffic. The C-MVNO needs to determine the optimal amounts of spectrum sensing and leasing by evaluating the trade off between cost and uncertainty. The C-MVNO also needs to determine the optimal price to sell the spectrum to the secondary unlicensed users, taking into account wireless heterogeneity of users such as different maximum transmission power levels and channel gains. We model and analyze the interactions between the C-MVNO and secondary unlicensed users as a Stackelberg game. We show several interesting properties of the network equilibrium, including threshold structures of the optimal investment and pricing decisions, the independence of the optimal price on users' wireless characteristics, and guaranteed fair and predictable QoS among users. We prove that these properties hold for general SNR regime and general continuous distributions of sensing uncertainty. We show that spectrum sensing can significantly improve the C-MVNO's expected profit and users' payoffs.Comment: A shorter version appears in IEEE INFOCOM 2010. This version has been submitted to IEEE Transactions on Mobile Computin

    Spectrum Trading: An Abstracted Bibliography

    Full text link
    This document contains a bibliographic list of major papers on spectrum trading and their abstracts. The aim of the list is to offer researchers entering this field a fast panorama of the current literature. The list is continually updated on the webpage \url{http://www.disp.uniroma2.it/users/naldi/Ricspt.html}. Omissions and papers suggested for inclusion may be pointed out to the authors through e-mail (\textit{[email protected]})

    TVWS policies to enable efficient spectrum sharing

    Get PDF
    The transition from analogue to the Digital Terrestrial Television (DTV) in Europe is planned to be completed by the end of the year 2012. The DTV spectrum allocation is such that there are a number of TV channels which cannot be used for additional high power broadcast transmitters due to mutual interference and hence are left unused within a given geographical location, i.e. the TV channels are geographically interleaved. The use of geographically interleaved spectrum provides for the so-called TV white spaces (TVWS) an opportunity for deploying new wireless services. The main objective of this paper is to present the spectrum policies that are suitable for TVWS at European level, identified within the COGEU project. The COGEU project aims the efficient exploitation of the geographical interleaved spectrum (TVWS). COGEU is an ICT collaborative project supported by the European Commission within the 7th Framework Programme. Nine partners from seven EU countries representing academia, research institutes and industry are involved in the project. The COGEU project is a composite of technical, business, and regulatory/policy domains, with the objective of taking advantage of the TV digital switchover by developing cognitive radio systems that leverage the favorable propagation characteristics of the UHF broadcast spectrum through the introduction and promotion of real-time secondary spectrum trading and the creation of new spectrum commons regimes. COGEU will also define new methodologies for compliance testing and certification of TVWS equipment to ensure non-interference coexistence with the DVB-T European standard. The innovation brought by COGEU is the combination of cognitive access to TV white spaces with secondary spectrum trading mechanisms.telecommunications,spectrum management,secondary spectrum market,regulation,TV white spaces,cognitive radio

    The Case for Liberal Spectrum Licenses: A Technical and Economic Perspective

    Get PDF
    The traditional system of radio spectrum allocation has inefficiently restricted wireless services. Alternatively, liberal licenses ceding de facto spectrum ownership rights yield incentives for operators to maximize airwave value. These authorizations have been widely used for mobile services in the U.S. and internationally, leading to the development of highly productive services and waves of innovation in technology, applications and business models. Serious challenges to the efficacy of such a spectrum regime have arisen, however. Seeing the widespread adoption of such devices as cordless phones and wi-fi radios using bands set aside for unlicensed use, some scholars and policy makers posit that spectrum sharing technologies have become cheap and easy to deploy, mitigating airwave scarcity and, therefore, the utility of exclusive rights. This paper evaluates such claims technically and economically. We demonstrate that spectrum scarcity is alive and well. Costly conflicts over airwave use not only continue, but have intensified with scientific advances that dramatically improve the functionality of wireless devices and so increase demand for spectrum access. Exclusive ownership rights help direct spectrum inputs to where they deliver the highest social gains, making exclusive property rules relatively more socially valuable. Liberal licenses efficiently accommodate rival business models (including those commonly associated with unlicensed spectrum allocations) while mitigating the constraints levied on spectrum use by regulators imposing restrictions in traditional licenses or via use rules and technology standards in unlicensed spectrum allocations.

    Contract-Based Cooperative Spectrum Sharing

    Full text link
    Providing proper economic incentives is essential for the success of dynamic spectrum sharing. Cooperative spectrum sharing is one effective way to achieve this goal. In cooperative spectrum sharing, secondary users (SUs) relay traffics for primary users (PUs), in exchange for dedicated transmission time for the SUs' own communication needs. In this paper, we study the cooperative spectrum sharing under incomplete information, where SUs' types (capturing their heterogeneity in relay channel gains and evaluations of power consumptions) are private information and not known by PUs. Inspired by the contract theory, we model the network as a labor market. The single PU is the employer who offers a contract to the SUs. The contract consists of a set of contract items representing combinations of spectrum accessing time (i.e., reward) and relaying power (i.e., contribution). The SUs are employees, and each of them selects the best contract item to maximize his payoff. We study the optimal contract design for both weak and strong incomplete information scenarios. First, we provide necessary and sufficient conditions for feasible contracts in both scenarios. In the weak incomplete information scenario, we further derive the optimal contract that achieves the same maximum PU's utility as in the complete information benchmark. In the strong incomplete information scenario, we propose a Decompose-and-Compare algorithm that achieves a close-to-optimal contract. We future show that the PU's average utility loss due to the suboptimal algorithm and the strong incomplete information are both relatively small (less than 2% and 1:3%, respectively, in our numerical results with two SU types).Comment: Part of this paper has appeared in IEEE DySPAN 2011, and this version has been submitted to IEEE J-SA

    Security in Dynamic Spectrum Access Systems: A Survey

    Get PDF
    Dynamic Spectrum Access (DSA) systems are being developed to improve spectrum utilization. Most of the research on DSA systems assumes that the participants involved are honest, cooperative, and that no malicious adversaries will attack or exploit the network. Some recent research efforts have focused on studying security issues in cognitive radios but there are still significant security challenges in the implementation of DSA systems that have not been addressed. In this paper we focus on security issues in DSA. We identify various attacks (e.g., DoS attacks, system penetration, repudiation, spoofing, authorization violation, malware infection, data modification, etc.) and suggest various approaches to address them. We show that significant security issues exist that should be addressed by the research community if DSA is to find its way into production systems. We also show that, in many cases, existing approaches to securing IT systems can be applied to DSA and identify other DSA specific security challenges where additional research will be required

    Sensing as a Service: An Exploration into the Practical Implementations of DSA

    Get PDF
    The cognitive radio literature generally assumes that the functions required for non-cooperative secondary DSA are integrated into a single radio system. It need not be so. In this paper, we model cognitive radio functions as a value chain and explore the implications of different forms of organization of this value chain. We initially explore the consequences of separating the sensing function from other cognitive radio functions
    • 

    corecore