369 research outputs found

    Listen-and-Talk: Protocol Design and Analysis for Full-duplex Cognitive Radio Networks

    Full text link
    In traditional cognitive radio networks, secondary users (SUs) typically access the spectrum of primary users (PUs) by a two-stage "listen-before-talk" (LBT) protocol, i.e., SUs sense the spectrum holes in the first stage before transmitting in the second. However, there exist two major problems: 1) transmission time reduction due to sensing, and 2) sensing accuracy impairment due to data transmission. In this paper, we propose a "listen-and-talk" (LAT) protocol with the help of full-duplex (FD) technique that allows SUs to simultaneously sense and access the vacant spectrum. Spectrum utilization performance is carefully analyzed, with the closed-form spectrum waste ratio and collision ratio with the PU provided. Also, regarding the secondary throughput, we report the existence of a tradeoff between the secondary transmit power and throughput. Based on the power-throughput tradeoff, we derive the analytical local optimal transmit power for SUs to achieve both high throughput and satisfying sensing accuracy. Numerical results are given to verify the proposed protocol and the theoretical results

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    Design and Optimal Configuration of Full-Duplex MAC Protocol for Cognitive Radio Networks Considering Self-Interference

    Get PDF
    In this paper, we propose an adaptive Medium Access Control (MAC) protocol for full-duplex (FD) cognitive radio networks in which FD secondary users (SUs) perform channel contention followed by concurrent spectrum sensing and transmission, and transmission only with maximum power in two different stages (called the FD sensing and transmission stages, respectively) in each contention and access cycle. The proposed FD cognitive MAC (FDC-MAC) protocol does not require synchronization among SUs and it efficiently utilizes the spectrum and mitigates the self-interference in the FD transceiver. We then develop a mathematical model to analyze the throughput performance of the FDC-MAC protocol where both half-duplex (HD) transmission (HDTx) and FD transmission (FDTx) modes are considered in the transmission stage. Then, we study the FDC-MAC configuration optimization through adaptively controlling the spectrum sensing duration and transmit power level in the FD sensing stage where we prove that there exists optimal sensing time and transmit power to achieve the maximum throughput and we develop an algorithm to configure the proposed FDC-MAC protocol. Extensive numerical results are presented to illustrate the characteristic of the optimal FDC-MAC configuration and the impacts of protocol parameters and the self-interference cancellation quality on the throughput performance. Moreover, we demonstrate the significant throughput gains of the FDC-MAC protocol with respect to existing half-duplex MAC (HD MAC) and single-stage FD MAC protocols.Comment: To Appear, IEEE Access, 201

    Hardware and Interference Limited Cooperative CR-NOMA Networks under Imperfect SIC and CSI

    Full text link
    The conflation of cognitive radio (CR) and nonorthogonal multiple access (NOMA) concepts is a promising approach to fulfil the massive connectivity goals of future networks given the spectrum scarcity. Accordingly, this letter investigates the outage performance of imperfect cooperative CR-NOMA networks under hardware impairments and interference. Our analysis is involved with the derivation of the end-to-end outage probability (OP) for secondary NOMA users by accounting for imperfect channel state information (CSI), as well as the residual interference caused by successive interference cancellation (SIC) errors and coexisting primary/secondary users. The numerical results validated by Monte Carlo simulations show that CR-NOMA network provides a superior outage performance over orthogonal multiple access. As imperfections become more significant, CR-NOMA is observed to deliver relatively poor outage performance.Comment: 5 pages, 4 figure
    corecore