16 research outputs found

    Modulation parameter estimation of LFM interference for direct sequence spread spectrum communication system in alpha-stable noise

    Get PDF
    The linear frequency modulation (LFM) interference is one of the typical broadband interferences in direct sequence spread spectrum (DSSS) communication system. In this article, a novel modulation parameter estimation method of LFM interference is proposed for the DSSS communication system in alpha-stable noise. To accurately estimate the modulation parameters, the alpha-stable noise should be eliminated first. Thus, we formulate a new generalized extended linear chirplet transform to suppress the alpha-stable noise, for a robust time-frequency, transformation of LFM interference is realized. Then, using the Radon transform, the maximum value after transformation and the chirp rate according to the angle related to the maximum value are estimated. In addition, a generalized Fourier transform is introduced to estimate the initial frequency of the LFM interference. For the performance analysis, the Cramér-Rao lower bounds of the estimated chirp rate and the initial frequency of the LFM interference in the presence of alpha-stable noise are derived. Moreover, the asymptotic properties of the modulation parameter estimator are analyzed. Simulation results demonstrate that the performance of the proposed parameter estimation method significantly outperforms existing methods, especially in a low SNR regime

    Blind parameter estimation of M-FSK signals in the presence of alpha-stable noise

    Get PDF
    Blind estimation of parameters for M-ary frequency-shift-keying (M-FSK) signals is great of importance in intelligent receivers. Many existing algorithms have assumed white Gaussian noise. However, their performance severely degrades when grossly corrupted data, i.e., outliers, exist. This paper solves this issue by developing a novel approach for parameter estimation of M-FSK signals in the presence of alpha-stable noise. Specifically, the proposed method exploits the generalized first- and second-order cyclostationarity of M-FSK signals with alpha-stable noise, which results in closed-form solutions for unknown parameters in both time and frequency domains. As a merit, it is computationally efficient and thus can be used for signal preprocessing, symbol timing estimation, signal and noise power estimation. Furthermore, substantial theoretical analysis on the performance of the proposed approach is provided. Simulations demonstrate that the proposed method is robust to alpha-stable noise and that it outperforms the state-of-the-art algorithms in many challenging scenarios

    Reliable detection of transmit-antenna number for MIMO systems in cognitive radio-enabled Internet of Things

    Get PDF
    Identification of transmit-antenna number is of importance in cognitive Internet of Things with multiple-input multiple-output (MIMO). Previous studies on transmit-antenna number detection only consider Gaussian noise and ignore impulsive interference. In the practical wireless communication, impulsive interference may exist due to low-frequency atmospheric noise, multiple access and electromagnetic disturbance. Such interference can usually be modeled as symmetric alpha stable (SαS), which cause the performance degradation of conventional algorithms based on Gaussian model. In this paper, we present a novel scheme to detect the transmit-antenna number for MIMO systems in cognitive Internet of Things, assuming that signals are corrupted by both SαS interference and Gaussian noise. We first introduce a new approach to characterize the generalized correlation matrix, and provide its bound with SαS interference. Then, the discriminating feature vector is constructed by utilizing the higher-order moments (HOM) of eigenvalues of the generalized correlation matrix. Finally, an advanced clustering algorithm is employed to detect the transmit-antenna number, using the cluster where the minimum eigenvalue is located. The proposed algorithm avoids the need for a priori information about the transmitted signals, such as coding mode, modulation type and pilot patterns. Simulation experiments demonstrate the feasibility of the proposed transmit-antenna number detection scheme in MIMO systems with Gaussian noise and SαS interference

    Energy and spectrum efficient blind equalization with unknown constellation for air-to-ground multipath UAV communications

    Get PDF
    In unmanned aerial vehicle (UAV) communications, frequency-selective fading can severely deteriorate the quality of transmitted signal by generating undesired and disordered constellation diagrams due to scatters in the air-to-ground (ATG) mutipath channels. In this paper, we propose a low-overhead blind equalization method to combat frequency-selective fading in air-ground multipath UAV channels. Specifically, a pre-equalization method is proposed based on a constant modulus algorithm to restore the contour of the constellation diagram. Moreover, the similarity measure function and the difference measure function are derived using template matching to identify the constellation of M-ary quadrature amplitude modulation. Furthermore, we propose a weighted constant cross algorithm (WXA) to reduce the residual mean square error and construct a cross-shaped modulus value, by utilizing the statistical information of the identified normalized standard constellation diagrams and the equalizer output decision symbols’ weighting value. The proposed method requires less information and no training sequences and pilots, therefore, if achieves energy and spectrum efficient ATG multipath UAV communications. Simulation results show that the proposed WXA algorithm can reduce the residual mean square error convergence value between -22dB and -25dB, making it very useful for the equalization of the frequency-selective fading channel in typical UAV communication scenarios

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Técnicas de compresión de imágenes hiperespectrales sobre hardware reconfigurable

    Get PDF
    Tesis de la Universidad Complutense de Madrid, Facultad de Informática, leída el 18-12-2020Sensors are nowadays in all aspects of human life. When possible, sensors are used remotely. This is less intrusive, avoids interferces in the measuring process, and more convenient for the scientist. One of the most recurrent concerns in the last decades has been sustainability of the planet, and how the changes it is facing can be monitored. Remote sensing of the earth has seen an explosion in activity, with satellites now being launched on a weekly basis to perform remote analysis of the earth, and planes surveying vast areas for closer analysis...Los sensores aparecen hoy en día en todos los aspectos de nuestra vida. Cuando es posible, de manera remota. Esto es menos intrusivo, evita interferencias en el proceso de medida, y además facilita el trabajo científico. Una de las preocupaciones recurrentes en las últimas décadas ha sido la sotenibilidad del planeta, y cómo menitoirzar los cambios a los que se enfrenta. Los estudios remotos de la tierra han visto un gran crecimiento, con satélites lanzados semanalmente para analizar la superficie, y aviones sobrevolando grades áreas para análisis más precisos...Fac. de InformáticaTRUEunpu
    corecore