160 research outputs found

    PERFORMANCE OF UPLINK-NOMA WITH USER PAIRING AND DATA RATE-BASED POWER SCHEME

    Get PDF
    This paper analyzes a performance of uplink power-domain non-orthogonal multiple access (NOMA) system with 2K users in which a resource allocation is taken into consideration. Since the power allocation and user pairing are tightly intertwined, they are considered as a hybrid issue. Accordingly, High-High/High-Low user pairing process precedes date rate-based power allocation. Derived closed-form expressions for the outage probabilities and the sum data rate for uplink power-domain NOMA system over a composite Fisher-Snedecor (F) fading channel are used for an extensive performance evaluation. The impact of different fading/shadowing channel conditions, various users’ positions and their number on the performance metrics is examined. Presented results have high level of generality since the F fading model provides accurate characterization of the multipath/shadowing conditions in numerous communication scenarios of interest

    Impact of NOMA on network capacity dimensioning for 5G HetNets

    Get PDF

    A NOMA-enhanced reconfigurable access scheme with device pairing for M2M networks

    Get PDF
    This paper aims to address the distinct requirements of machine-to-machine networks, particularly heterogeneity and massive transmissions. To this end, a reconfigurable medium access control (MAC) with the ability to choose a proper access scheme with the optimal configuration for devices based on the network status is proposed. In this scheme, in each frame, a separate time duration is allocated for each of the nonorthogonal multiple access (NOMA)-based, orthogonal multiple access (OMA)-based, and random access-based segments, where the length of each segment can be optimized. To solve this optimization problem, an iterative algorithm consisting of two sub-problems is proposed. The first sub-problem deals with selecting devices for the NOMA/OMA-based transmissions, while the second one optimizes the parameter of the random access scheme. To show the efficacy of the proposed scheme, the results are compared with the reconfigurable scheme which does not support NOMA. The results demonstrate that by using a proper device pairing scheme for the NOMA-based transmissions, the proposed reconfigurable scheme achieves better performance when NOMA is adopted
    corecore