416 research outputs found

    Spectrum Utilisation and Management in Cognitive Radio Networks

    Get PDF

    Detection of PPM-UWB random signals

    Get PDF
    This paper focuses on the symbol detection problem of random pulse-position modulation (PPM) ultrawideband (UWB) signals in the absence of interframe interference. Particular attention is devoted to severely time-varying channels where optimal detectors are proposed for both uncorrelated and correlated scattering scenarios. This is done by assuming the received waveforms to be unknown parameters. In UWB communication systems, the assumption of unknown random waveforms is consistent with the fact that the received waveform has very little resemblance with the original transmitted pulse. In order to circumvent this limitation, a conditional approach is presented herein by compressing the likelihood ratio test with the information regarding the second-order moments of the end-to-end channel response. Both full-rank and rank-one detectors are derived. For the reduced complexity rank-one detector, an iterative procedure is presented that maximizes the J-divergence between the hypotheses to be tested. Finally, simulation results are provided to compare the performance of the proposed detectors in different propagation environments.Peer Reviewe

    Interference Management And Game Theoretic Analysis of Cognitive Radio

    Get PDF

    Impact of Dynamic Traffic on Vehicle-to-Vehicle Visible Light Communication Systems

    Get PDF
    In this article we studies the impact of dynamic vehicular traffic density on the signal-to-noise-ratio and the associated bit-error-rate (BER) performance of vehicle-to-vehicle visible light communication (V2V-VLC) systems. The article uses traffic data from the M42 and M6 motorways in the U.K. to investigate the probability of coexistence of other vehicles in the adjacent lanes, which induce interference and act as potential reflectors. The results show that the probability of coexistence of other vehicles in the adjacent lanes is lane-independent and it increases during the rush hours to 90%, while it decays to less than 10% during the off-peak and early morning hours. The intervehicular distance and the BER performance vary widely between different lanes and different periods of the day. The results also show that the BER performance of V2V-VLC system with non-line-of-sight (NLOS) component and with LOS component are comparable at rush hours. However, high BER values are predicted during the off-peak hours for NLOS components of the channel

    On Random Sampling for Compliance Monitoring in Opportunistic Spectrum Access Networks

    Get PDF
    In the expanding spectrum marketplace, there has been a long term evolution towards more market€“oriented mechanisms, such as Opportunistic Spectrum Access (OSA), enabled through Cognitive Radio (CR) technology. However, the potential of CR technologies to revolutionize wireless communications, also introduces challenges based upon the potentially non€“deterministic CR behaviour in the Electrospace. While establishing and enforcing compliance to spectrum etiquette rules are essential to realization of successful OSA networks in the future, there has only been recent increased research activity into enforcement. This dissertation presents novel work on the spectrum monitoring aspect, which is crucial to effective enforcement of OSA. An overview of the challenges faced by current compliance monitoring methods is first presented. A framework is then proposed for the use of random spectral sampling techniques to reduce data collection complexity in wideband sensing scenarios. This approach is recommended as an alternative to Compressed Sensing (CS) techniques for wideband spectral occupancy estimation, which may be difficult to utilize in many practical congested scenarios where compliance monitoring is required. Next, a low€“cost computational approach to online randomized temporal sensing deployment is presented for characterization of temporal spectrum occupancy in cognitive radio scenarios. The random sensing approach is demonstrated and its performance is compared to CS€“based approach for occupancy estimation. A novel frame€“based sampling inversion technique is then presented for cases when it is necessary to track the temporal behaviour of individual CRs or CR networks. Parameters from randomly sampled Physical Layer Convergence Protocol (PLCP) data frames are used to reconstruct occupancy statistics, taking account of missed frames due to sampling design, sensor limitations and frame errors. Finally, investigations into the use of distributed and mobile spectrum sensing to collect spatial diversity to improve the above techniques are presented, for several common monitoring tasks in spectrum enforcement. Specifically, focus is upon techniques for achieving consensus in dynamic topologies such as in mobile sensing scenarios

    Performance Analysis of Cognitive Radio Systems with Imperfect Channel Knowledge

    Get PDF
    An analytical framework is established to characterize the effects such as time allocation and variation, arising due to the incorporation of imperfect channel knowledge, that are detrimental to the performance of the cognitive radio systems. In order to facilitate hardware deployment of a cognitive radio system, received power-based estimation, a novel channel estimation technique is employed for the channels existing between the primary and the secondary systems, thus fulfilling low-complexity and versatility requirements

    SWIFT: A Narrowband-Friendly Cognitive Wideband Network

    Get PDF
    Wideband technologies in the unlicensed spectrum can satisfy the ever-increasing demands for wireless bandwidth created by emerging rich media applications. The key challenge for such systems, however, is to allow narrowband technologies that share these bands (say, 802.11 a/b/g/n, Zigbee) to achieve their normal performance, without compromising the throughput or range of the wideband network.This paper presents SWIFT, the first system where high-throughput wideband nodes are shown in a working deployment to coexist with unknown narrowband devices, while forming a network of their own. Prior work avoids narrowband devices by operating below the noise level and limiting itself to a single contiguous unused band. While this achieves coexistence, it sacrifices the throughput and operating distance of the wideband device. In contrast, SWIFT creates high throughput wireless links by weaving together non-contiguous unused frequency bands that change as narrowband devices enter or leave the environment. This design principle of cognitive aggregation allows SWIFT to achieve coexistence, while operating at normal power, and thereby obtaining higher throughput and greater operating range. We implement SWIFT on a wideband hardware platform, and evaluate it in the presence of 802.11 devices. In comparison to a baseline that coexists with narrowband devices by operating below their noise level, SWIFT is equally narrowband-friendly but achieves 3.6x-10.5x higher throughput and 6x greater range
    • …
    corecore