2,712 research outputs found

    A Survey on Mobile Edge Networks: Convergence of Computing, Caching and Communications

    Full text link
    As the explosive growth of smart devices and the advent of many new applications, traffic volume has been growing exponentially. The traditional centralized network architecture cannot accommodate such user demands due to heavy burden on the backhaul links and long latency. Therefore, new architectures which bring network functions and contents to the network edge are proposed, i.e., mobile edge computing and caching. Mobile edge networks provide cloud computing and caching capabilities at the edge of cellular networks. In this survey, we make an exhaustive review on the state-of-the-art research efforts on mobile edge networks. We first give an overview of mobile edge networks including definition, architecture and advantages. Next, a comprehensive survey of issues on computing, caching and communication techniques at the network edge is presented respectively. The applications and use cases of mobile edge networks are discussed. Subsequently, the key enablers of mobile edge networks such as cloud technology, SDN/NFV and smart devices are discussed. Finally, open research challenges and future directions are presented as well

    Machine Intelligence Techniques for Next-Generation Context-Aware Wireless Networks

    Full text link
    The next generation wireless networks (i.e. 5G and beyond), which would be extremely dynamic and complex due to the ultra-dense deployment of heterogeneous networks (HetNets), poses many critical challenges for network planning, operation, management and troubleshooting. At the same time, generation and consumption of wireless data are becoming increasingly distributed with ongoing paradigm shift from people-centric to machine-oriented communications, making the operation of future wireless networks even more complex. In mitigating the complexity of future network operation, new approaches of intelligently utilizing distributed computational resources with improved context-awareness becomes extremely important. In this regard, the emerging fog (edge) computing architecture aiming to distribute computing, storage, control, communication, and networking functions closer to end users, have a great potential for enabling efficient operation of future wireless networks. These promising architectures make the adoption of artificial intelligence (AI) principles which incorporate learning, reasoning and decision-making mechanism, as natural choices for designing a tightly integrated network. Towards this end, this article provides a comprehensive survey on the utilization of AI integrating machine learning, data analytics and natural language processing (NLP) techniques for enhancing the efficiency of wireless network operation. In particular, we provide comprehensive discussion on the utilization of these techniques for efficient data acquisition, knowledge discovery, network planning, operation and management of the next generation wireless networks. A brief case study utilizing the AI techniques for this network has also been provided.Comment: ITU Special Issue N.1 The impact of Artificial Intelligence (AI) on communication networks and services, (To appear

    Network Slicing in Fog Radio Access Networks: Issues and Challenges

    Full text link
    Network slicing has been advocated by both academia and industry as a cost-efficient way to enable operators to provide networks on an as-a-service basis and meet the wide range of use cases that the fifth generation wireless network will serve. The existing works on network slicing are mainly targeted at the partition of the core network, and the prospect of network slicing in radio access networks should be jointly exploited. To solve this challenge, an enhanced network slicing in fog radio access networks (F-RANs), termed as access slicing, is proposed. This article comprehensively presents a novel architecture and related key techniques for access slicing in F-RANs. The proposed hierarchical architecture of access slicing consists of centralized orchestration layer and slice instance layer, which makes the access slicing adaptively implement in an convenient way. Meanwhile, key techniques and their corresponding solutions, including the radio and cache resource management, as well as the social-aware slicing, are presented. Open issues in terms of standardization developments and field trials are identified

    Management and Orchestration of Network Slices in 5G, Fog, Edge and Clouds

    Full text link
    Network slicing allows network operators to build multiple isolated virtual networks on a shared physical network to accommodate a wide variety of services and applications. With network slicing, service providers can provide a cost-efficient solution towards meeting diverse performance requirements of deployed applications and services. Despite slicing benefits, End-to-End orchestration and management of network slices is a challenging and complicated task. In this chapter, we intend to survey all the relevant aspects of network slicing, with the focus on networking technologies such as Software-defined networking (SDN) and Network Function Virtualization (NFV) in 5G, Fog/Edge and Cloud Computing platforms. To build the required background, this chapter begins with a brief overview of 5G, Fog/Edge and Cloud computing, and their interplay. Then we cover the 5G vision for network slicing and extend it to the Fog and Cloud computing through surveying the state-of-the-art slicing approaches in these platforms. We conclude the chapter by discussing future directions, analyzing gaps and trends towards the network slicing realization.Comment: 31 pages, 4 figures, Fog and Edge Computing: Principles and Paradigms, Wiley Press, New York, USA, 201

    An Amateur Drone Surveillance System Based on Cognitive Internet of Things

    Full text link
    Drones, also known as mini-unmanned aerial vehicles, have attracted increasing attention due to their boundless applications in communications, photography, agriculture, surveillance and numerous public services. However, the deployment of amateur drones poses various safety, security and privacy threats. To cope with these challenges, amateur drone surveillance becomes a very important but largely unexplored topic. In this article, we firstly present a brief survey to show the state-of-the-art studies on amateur drone surveillance. Then, we propose a vision, named Dragnet, by tailoring the recent emerging cognitive internet of things framework for amateur drone surveillance. Next, we discuss the key enabling techniques for Dragnet in details, accompanied with the technical challenges and open issues. Furthermore, we provide an exemplary case study on the detection and classification of authorized and unauthorized amateur drones, where, for example, an important event is being held and only authorized drones are allowed to fly over

    Applications of Deep Reinforcement Learning in Communications and Networking: A Survey

    Full text link
    This paper presents a comprehensive literature review on applications of deep reinforcement learning in communications and networking. Modern networks, e.g., Internet of Things (IoT) and Unmanned Aerial Vehicle (UAV) networks, become more decentralized and autonomous. In such networks, network entities need to make decisions locally to maximize the network performance under uncertainty of network environment. Reinforcement learning has been efficiently used to enable the network entities to obtain the optimal policy including, e.g., decisions or actions, given their states when the state and action spaces are small. However, in complex and large-scale networks, the state and action spaces are usually large, and the reinforcement learning may not be able to find the optimal policy in reasonable time. Therefore, deep reinforcement learning, a combination of reinforcement learning with deep learning, has been developed to overcome the shortcomings. In this survey, we first give a tutorial of deep reinforcement learning from fundamental concepts to advanced models. Then, we review deep reinforcement learning approaches proposed to address emerging issues in communications and networking. The issues include dynamic network access, data rate control, wireless caching, data offloading, network security, and connectivity preservation which are all important to next generation networks such as 5G and beyond. Furthermore, we present applications of deep reinforcement learning for traffic routing, resource sharing, and data collection. Finally, we highlight important challenges, open issues, and future research directions of applying deep reinforcement learning.Comment: 37 pages, 13 figures, 6 tables, 174 reference paper

    A Survey on Low Latency Towards 5G: RAN, Core Network and Caching Solutions

    Full text link
    The fifth generation (5G) wireless network technology is to be standardized by 2020, where main goals are to improve capacity, reliability, and energy efficiency, while reducing latency and massively increasing connection density. An integral part of 5G is the capability to transmit touch perception type real-time communication empowered by applicable robotics and haptics equipment at the network edge. In this regard, we need drastic changes in network architecture including core and radio access network (RAN) for achieving end-to-end latency on the order of 1 ms. In this paper, we present a detailed survey on the emerging technologies to achieve low latency communications considering three different solution domains: RAN, core network, and caching. We also present a general overview of 5G cellular networks composed of software defined network (SDN), network function virtualization (NFV), caching, and mobile edge computing (MEC) capable of meeting latency and other 5G requirements.Comment: Accepted in IEEE Communications Surveys and Tutorial

    The CTTC 5G end-to-end experimental platform: Integrating heterogeneous wireless/optical networks, distributed cloud, and IoT devices

    Full text link
    The Internet of Things (IoT) will facilitate a wide variety of applications in different domains, such as smart cities, smart grids, industrial automation (Industry 4.0), smart driving, assistance of the elderly, and home automation. Billions of heterogeneous smart devices with different application requirements will be connected to the networks and will generate huge aggregated volumes of data that will be processed in distributed cloud infrastructures. On the other hand, there is also a general trend to deploy functions as software (SW) instances in cloud infrastructures [e.g., network function virtualization (NFV) or mobile edge computing (MEC)]. Thus, the next generation of mobile networks, the fifth-generation (5G), will need not only to develop new radio interfaces or waveforms to cope with the expected traffic growth but also to integrate heterogeneous networks from end to end (E2E) with distributed cloud resources to deliver E2E IoT and mobile services. This article presents the E2E 5G platform that is being developed by the Centre Tecnol\`ogic de Telecomunicacions de Catalunya (CTTC), the first known platform capable of reproducing such an ambitious scenario

    Internet of Cloud: Security and Privacy issues

    Full text link
    The synergy between the cloud and the IoT has emerged largely due to the cloud having attributes which directly benefit the IoT and enable its continued growth. IoT adopting Cloud services has brought new security challenges. In this book chapter, we pursue two main goals: 1) to analyse the different components of Cloud computing and the IoT and 2) to present security and privacy problems that these systems face. We thoroughly investigate current security and privacy preservation solutions that exist in this area, with an eye on the Industrial Internet of Things, discuss open issues and propose future directionsComment: 27 pages, 4 figure

    Towards Enabling Novel Edge-Enabled Applications

    Full text link
    Edge computing has emerged as a distributed computing paradigm to overcome practical scalability limits of cloud computing. The main principle of edge computing is to leverage on computational resources outside of the cloud for performing computations closer to data sources, avoiding unnecessary data transfers to the cloud and enabling faster responses for clients. While this paradigm has been successfully employed to improve response times in some contexts, mostly by having clients perform pre-processing and/or filtering of data, or by leveraging on distributed caching infrastructures, we argue that the combination of edge and cloud computing has the potential to enable novel applications. However, to do so, some significant research challenges have to be tackled by the computer science community. In this paper, we discuss different edge resources and their potential use, motivated by envisioned use cases. We then discuss concrete research challenges that are in the critical path towards realizing our edge vision. We conclude by proposing a research agenda to allow the full exploitation of the potential for the emerging hybrid cloud/edge paradigm
    corecore