1,138 research outputs found

    Spectrogram Image Analysis of Error Signals for Minimizing Impulse Noise

    Get PDF
    This paper presents the theoretical and experimental study on the spectrogram image analysis of error signals for minimizing the impulse input noises in the active suppression of noise. Impulse inputs of some specific wave patterns as primary noises to a one-dimensional duct with the length of 1800 mm are shown. The convergence speed of the adaptive feedforward algorithm based on the least mean square approach was controlled by a normalized step size which was incorporated into the algorithm. The variations of the step size govern the stability as well as the convergence speed. Because of this reason, a normalized step size is introduced as a new method for the control of impulse noise. The spectrogram images which indicate the degree of the attenuation of the impulse input noises are considered to represent the attenuation with the new method. The algorithm is extensively investigated in both simulation and real-time control experiment. It is demonstrated that the suggested algorithm worked with a nice stability and performance against impulse noises. The results in this study can be used for practical active noise control systems

    A Novel Adaptive Spectrum Noise Cancellation Approach for Enhancing Heartbeat Rate Monitoring in a Wearable Device

    Get PDF
    This paper presents a novel approach, Adaptive Spectrum Noise Cancellation (ASNC), for motion artifacts removal in Photoplethysmography (PPG) signals measured by an optical biosensor to obtain clean PPG waveforms for heartbeat rate calculation. One challenge faced by this optical sensing method is the inevitable noise induced by movement when the user is in motion, especially when the motion frequency is very close to the target heartbeat rate. The proposed ASNC utilizes the onboard accelerometer and gyroscope sensors to detect and remove the artifacts adaptively, thus obtaining accurate heartbeat rate measurement while in motion. The ASNC algorithm makes use of a commonly accepted spectrum analysis approaches in medical digital signal processing, discrete cosine transform, to carry out frequency domain analysis. Results obtained by the proposed ASNC have been compared to the classic algorithms, the adaptive threshold peak detection and adaptive noise cancellation. The mean (standard deviation) absolute error and mean relative error of heartbeat rate calculated by ASNC is 0.33 (0.57) beats·min-1 and 0.65%, by adaptive threshold peak detection algorithm is 2.29 (2.21) beats·min-1 and 8.38%, by adaptive noise cancellation algorithm is 1.70 (1.50) beats·min-1 and 2.02%. While all algorithms performed well with both simulated PPG data and clean PPG data collected from our Verity device in situations free of motion artifacts, ASNC provided better accuracy when motion artifacts increase, especially when motion frequency is very close to the heartbeat rate

    Performance evaluation of the Hilbert–Huang transform for respiratory sound analysis and its application to continuous adventitious sound characterization

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The use of the Hilbert–Huang transform in the analysis of biomedical signals has increased during the past few years, but its use for respiratory sound (RS) analysis is still limited. The technique includes two steps: empirical mode decomposition (EMD) and instantaneous frequency (IF) estimation. Although the mode mixing (MM) problem of EMD has been widely discussed, this technique continues to be used in many RS analysis algorithms. In this study, we analyzed the MM effect in RS signals recorded from 30 asthmatic patients, and studied the performance of ensemble EMD (EEMD) and noise-assisted multivariate EMD (NA-MEMD) as means for preventing this effect. We propose quantitative parameters for measuring the size, reduction of MM, and residual noise level of each method. These parameters showed that EEMD is a good solution for MM, thus outperforming NA-MEMD. After testing different IF estimators, we propose Kay¿s method to calculate an EEMD-Kay-based Hilbert spectrum that offers high energy concentrations and high time and high frequency resolutions. We also propose an algorithm for the automatic characterization of continuous adventitious sounds (CAS). The tests performed showed that the proposed EEMD-Kay-based Hilbert spectrum makes it possible to determine CAS more precisely than other conventional time-frequency techniques.Postprint (author's final draft

    Spectrogram inversion and potential applications for hearing research

    Get PDF

    Analysis, Visualization, and Transformation of Audio Signals Using Dictionary-based Methods

    Get PDF
    date-added: 2014-01-07 09:15:58 +0000 date-modified: 2014-01-07 09:15:58 +0000date-added: 2014-01-07 09:15:58 +0000 date-modified: 2014-01-07 09:15:58 +000

    Speech Dereverberation Based on Integrated Deep and Ensemble Learning Algorithm

    Full text link
    Reverberation, which is generally caused by sound reflections from walls, ceilings, and floors, can result in severe performance degradation of acoustic applications. Due to a complicated combination of attenuation and time-delay effects, the reverberation property is difficult to characterize, and it remains a challenging task to effectively retrieve the anechoic speech signals from reverberation ones. In the present study, we proposed a novel integrated deep and ensemble learning algorithm (IDEA) for speech dereverberation. The IDEA consists of offline and online phases. In the offline phase, we train multiple dereverberation models, each aiming to precisely dereverb speech signals in a particular acoustic environment; then a unified fusion function is estimated that aims to integrate the information of multiple dereverberation models. In the online phase, an input utterance is first processed by each of the dereverberation models. The outputs of all models are integrated accordingly to generate the final anechoic signal. We evaluated the IDEA on designed acoustic environments, including both matched and mismatched conditions of the training and testing data. Experimental results confirm that the proposed IDEA outperforms single deep-neural-network-based dereverberation model with the same model architecture and training data

    Applications of Adaptive Filtering

    Get PDF

    A Bayesian approach to convolutive nonnegative matrix factorization for blind speech dereverberation

    Get PDF
    When a signal is recorded in an enclosed room, it typically gets affected by reverberation. This degradation represents a problem when dealing with audio signals, particularly in the field of speech signal processing, such as automatic speech recognition. Although there are some approaches to deal with this issue that are quite satisfactory under certain conditions, constructing a method that works well in a general context still poses a significant challenge. In this article, we propose a Bayesian approach based on convolutive nonnegative matrix factorization that uses prior distributions in order to impose certain characteristics over the time-frequency components of the restored signal and the reverberant components. An algorithm for implementing the method is described and tested.Comparisons of the results against those obtained with state-of-the-art methods are presented, showing significant improvement.Fil: Ibarrola, Francisco Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Di Persia, Leandro Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Spies, Ruben Daniel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentin

    Detection of multi-class arrhythmia using heuristic and deep neural network on edge device

    Get PDF
    Heart disease is a heart condition that sometimes causes a person to die suddenly. One indication is a rhythm disorder known as arrhythmia. Multi-class Arrhythmia Detection has followed: QRS complex detection procedure and arrhythmia classification based on the QRS complex morphology. We proposed an edge device that detects QRS complexes based on variance analysis (QVAT) and the arrhythmia classification based on the QRS complex spectrogram. The classifier uses two-dimensional convolutional neural network (2D CNN) deep learning. We use a single board computer and neural network compute stick to implement the edge device. The outcomes are a prototype device cardiologists use as a supporting tool for analysing ECG signals, and patients can also use it for self-tests to figure out their heart health. To evaluate the performance of our edge device, we tested using the MIT-BIH database because other methods also use the data. The QVAT sensitivity and predictive positive are 99.81% and 99.90%, respectively. Our classifier's accuracy, sensitivity, predictive positive, specificity, and F1-score are 99.82%, 99.55%, 99.55%, 99.89%, and 99.55%, respectively. The experiment result of arrhythmia classification shows that our method outperforms the others. Still, for r-peak detection, the QVAT implemented in an edge device is comparable to the other methods. In future work, we can improve the performance of r-peak detection using the double-check algorithm in QVAT and cross-check the QRS complex detection by adding 1 class to the classifier, namely the non-QRS class
    • …
    corecore