509 research outputs found

    Polynomial mechanics and optimal control

    Full text link
    We describe a new algorithm for trajectory optimization of mechanical systems. Our method combines pseudo-spectral methods for function approximation with variational discretization schemes that exactly preserve conserved mechanical quantities such as momentum. We thus obtain a global discretization of the Lagrange-d'Alembert variational principle using pseudo-spectral methods. Our proposed scheme inherits the numerical convergence characteristics of spectral methods, yet preserves momentum-conservation and symplecticity after discretization. We compare this algorithm against two other established methods for two examples of underactuated mechanical systems; minimum-effort swing-up of a two-link and a three-link acrobot.Comment: Final version to EC

    C1-continuous space-time discretization based on Hamilton's law of varying action

    Full text link
    We develop a class of C1-continuous time integration methods that are applicable to conservative problems in elastodynamics. These methods are based on Hamilton's law of varying action. From the action of the continuous system we derive a spatially and temporally weak form of the governing equilibrium equations. This expression is first discretized in space, considering standard finite elements. The resulting system is then discretized in time, approximating the displacement by piecewise cubic Hermite shape functions. Within the time domain we thus achieve C1-continuity for the displacement field and C0-continuity for the velocity field. From the discrete virtual action we finally construct a class of one-step schemes. These methods are examined both analytically and numerically. Here, we study both linear and nonlinear systems as well as inherently continuous and discrete structures. In the numerical examples we focus on one-dimensional applications. The provided theory, however, is general and valid also for problems in 2D or 3D. We show that the most favorable candidate -- denoted as p2-scheme -- converges with order four. Thus, especially if high accuracy of the numerical solution is required, this scheme can be more efficient than methods of lower order. It further exhibits, for linear simple problems, properties similar to variational integrators, such as symplecticity. While it remains to be investigated whether symplecticity holds for arbitrary systems, all our numerical results show an excellent long-term energy behavior.Comment: slightly condensed the manuscript, added references, numerical results unchange

    High order variational integrators in the optimal control of mechanical systems

    Get PDF
    In recent years, much effort in designing numerical methods for the simulation and optimization of mechanical systems has been put into schemes which are structure preserving. One particular class are variational integrators which are momentum preserving and symplectic. In this article, we develop two high order variational integrators which distinguish themselves in the dimension of the underling space of approximation and we investigate their application to finite-dimensional optimal control problems posed with mechanical systems. The convergence of state and control variables of the approximated problem is shown. Furthermore, by analyzing the adjoint systems of the optimal control problem and its discretized counterpart, we prove that, for these particular integrators, dualization and discretization commute.Comment: 25 pages, 9 figures, 1 table, submitted to DCDS-

    Space-time FLAVORS: finite difference, multisymlectic, and pseudospectral integrators for multiscale PDEs

    Get PDF
    We present a new class of integrators for stiff PDEs. These integrators are generalizations of FLow AVeraging integratORS (FLAVORS) for stiff ODEs and SDEs introduced in [Tao, Owhadi and Marsden 2010] with the following properties: (i) Multiscale: they are based on flow averaging and have a computational cost determined by mesoscopic steps in space and time instead of microscopic steps in space and time; (ii) Versatile: the method is based on averaging the flows of the given PDEs (which may have hidden slow and fast processes). This bypasses the need for identifying explicitly (or numerically) the slow variables or reduced effective PDEs; (iii) Nonintrusive: A pre-existing numerical scheme resolving the microscopic time scale can be used as a black box and easily turned into one of the integrators in this paper by turning the large coefficients on over a microscopic timescale and off during a mesoscopic timescale; (iv) Convergent over two scales: strongly over slow processes and in the sense of measures over fast ones; (v) Structure-preserving: for stiff Hamiltonian PDEs (possibly on manifolds), they can be made to be multi-symplectic, symmetry-preserving (symmetries are group actions that leave the system invariant) in all variables and variational

    Error analysis of trigonometric integrators for semilinear wave equations

    Full text link
    An error analysis of trigonometric integrators (or exponential integrators) applied to spatial semi-discretizations of semilinear wave equations with periodic boundary conditions in one space dimension is given. In particular, optimal second-order convergence is shown requiring only that the exact solution is of finite energy. The analysis is uniform in the spatial discretization parameter. It covers the impulse method which coincides with the method of Deuflhard and the mollified impulse method of Garc\'ia-Archilla, Sanz-Serna & Skeel as well as the trigonometric methods proposed by Hairer & Lubich and by Grimm & Hochbruck. The analysis can also be used to explain the convergence behaviour of the St\"ormer-Verlet/leapfrog discretization in time.Comment: 25 page
    • ā€¦
    corecore