1,538 research outputs found

    Spectral-Spatial Neural Networks and Probabilistic Graph Models for Hyperspectral Image Classification

    Get PDF
    Pixel-wise hyperspectral image (HSI) classification has been actively studied since it shares similar characteristics with related computer vision tasks, including image classification, object detection, and semantic segmentation, but also possesses inherent differences. The research surrounding HSI classification sheds light on an approach to bridge computer vision and remote sensing. Modern deep neural networks dominate and repeatedly set new records in all image recognition challenges, largely due to their excellence in extracting discriminative features through multi-layer nonlinear transformation. However, three challenges hinder the direct adoption of convolutional neural networks (CNNs) for HSI classification. First, typical HSIs contain hundreds of spectral channels that encode abundant pixel-wise spectral information, leading to the curse of dimensionality. Second, HSIs usually have relatively small numbers of annotated pixels for training along with large numbers of unlabeled pixels, resulting in the problem of generalization. Third, the scarcity of annotations and the complexity of HSI data induce noisy classification maps, which are a common issue in various types of remotely sensed data interpretation. Recent studies show that taking the data attributes into the designing of fundamental components of deep neural networks can improve their representational capacity and then facilitates these models to achieve better recognition performance. To the best of our knowledge, no research has exploited this finding or proposed corresponding models for supervised HSI classification given enough labeled HSI data. In cases of limited labeled HSI samples for training, conditional random fields (CRFs) are an effective graph model to impose data-agnostic constraints upon the intermediate outputs of trained discriminators. Although CRFs have been widely used to enhance HSI classification performance, the integration of deep learning and probabilistic graph models in the framework of semi-supervised learning remains an open question. To this end, this thesis presents supervised spectral-spatial residual networks (SSRNs) and semi-supervised generative adversarial network (GAN) -based models that account for the characteristics of HSIs and make three main contributions. First, spectral and spatial convolution layers are introduced to learn representative HSI features for supervised learning models. Second, generative adversarial networks (GANs) composed of spectral/spatial convolution and transposed-convolution layers are proposed to take advantage of adversarial training using limited amounts of labeled data for semi-supervised learning. Third, fully-connected CRFs are adopted to impose smoothness constraints on the predictions of the trained discriminators of GANs to enhance HSI classification performance. Empirical evidence acquired by experimental comparison to state-of-the-art models validates the effectiveness and generalizability of SSRN, SS-GAN, and GAN-CRF models

    Spectral-Spatial Neural Networks and Probabilistic Graph Models for Hyperspectral Image Classification

    Get PDF
    Pixel-wise hyperspectral image (HSI) classification has been actively studied since it shares similar characteristics with related computer vision tasks, including image classification, object detection, and semantic segmentation, but also possesses inherent differences. The research surrounding HSI classification sheds light on an approach to bridge computer vision and remote sensing. Modern deep neural networks dominate and repeatedly set new records in all image recognition challenges, largely due to their excellence in extracting discriminative features through multi-layer nonlinear transformation. However, three challenges hinder the direct adoption of convolutional neural networks (CNNs) for HSI classification. First, typical HSIs contain hundreds of spectral channels that encode abundant pixel-wise spectral information, leading to the curse of dimensionality. Second, HSIs usually have relatively small numbers of annotated pixels for training along with large numbers of unlabeled pixels, resulting in the problem of generalization. Third, the scarcity of annotations and the complexity of HSI data induce noisy classification maps, which are a common issue in various types of remotely sensed data interpretation. Recent studies show that taking the data attributes into the designing of fundamental components of deep neural networks can improve their representational capacity and then facilitates these models to achieve better recognition performance. To the best of our knowledge, no research has exploited this finding or proposed corresponding models for supervised HSI classification given enough labeled HSI data. In cases of limited labeled HSI samples for training, conditional random fields (CRFs) are an effective graph model to impose data-agnostic constraints upon the intermediate outputs of trained discriminators. Although CRFs have been widely used to enhance HSI classification performance, the integration of deep learning and probabilistic graph models in the framework of semi-supervised learning remains an open question. To this end, this thesis presents supervised spectral-spatial residual networks (SSRNs) and semi-supervised generative adversarial network (GAN) -based models that account for the characteristics of HSIs and make three main contributions. First, spectral and spatial convolution layers are introduced to learn representative HSI features for supervised learning models. Second, generative adversarial networks (GANs) composed of spectral/spatial convolution and transposed-convolution layers are proposed to take advantage of adversarial training using limited amounts of labeled data for semi-supervised learning. Third, fully-connected CRFs are adopted to impose smoothness constraints on the predictions of the trained discriminators of GANs to enhance HSI classification performance. Empirical evidence acquired by experimental comparison to state-of-the-art models validates the effectiveness and generalizability of SSRN, SS-GAN, and GAN-CRF models

    A Comprehensive Survey of Deep Learning in Remote Sensing: Theories, Tools and Challenges for the Community

    Full text link
    In recent years, deep learning (DL), a re-branding of neural networks (NNs), has risen to the top in numerous areas, namely computer vision (CV), speech recognition, natural language processing, etc. Whereas remote sensing (RS) possesses a number of unique challenges, primarily related to sensors and applications, inevitably RS draws from many of the same theories as CV; e.g., statistics, fusion, and machine learning, to name a few. This means that the RS community should be aware of, if not at the leading edge of, of advancements like DL. Herein, we provide the most comprehensive survey of state-of-the-art RS DL research. We also review recent new developments in the DL field that can be used in DL for RS. Namely, we focus on theories, tools and challenges for the RS community. Specifically, we focus on unsolved challenges and opportunities as it relates to (i) inadequate data sets, (ii) human-understandable solutions for modelling physical phenomena, (iii) Big Data, (iv) non-traditional heterogeneous data sources, (v) DL architectures and learning algorithms for spectral, spatial and temporal data, (vi) transfer learning, (vii) an improved theoretical understanding of DL systems, (viii) high barriers to entry, and (ix) training and optimizing the DL.Comment: 64 pages, 411 references. To appear in Journal of Applied Remote Sensin

    Advances in Hyperspectral Image Classification: Earth monitoring with statistical learning methods

    Full text link
    Hyperspectral images show similar statistical properties to natural grayscale or color photographic images. However, the classification of hyperspectral images is more challenging because of the very high dimensionality of the pixels and the small number of labeled examples typically available for learning. These peculiarities lead to particular signal processing problems, mainly characterized by indetermination and complex manifolds. The framework of statistical learning has gained popularity in the last decade. New methods have been presented to account for the spatial homogeneity of images, to include user's interaction via active learning, to take advantage of the manifold structure with semisupervised learning, to extract and encode invariances, or to adapt classifiers and image representations to unseen yet similar scenes. This tutuorial reviews the main advances for hyperspectral remote sensing image classification through illustrative examples.Comment: IEEE Signal Processing Magazine, 201

    State-of-the-art and gaps for deep learning on limited training data in remote sensing

    Full text link
    Deep learning usually requires big data, with respect to both volume and variety. However, most remote sensing applications only have limited training data, of which a small subset is labeled. Herein, we review three state-of-the-art approaches in deep learning to combat this challenge. The first topic is transfer learning, in which some aspects of one domain, e.g., features, are transferred to another domain. The next is unsupervised learning, e.g., autoencoders, which operate on unlabeled data. The last is generative adversarial networks, which can generate realistic looking data that can fool the likes of both a deep learning network and human. The aim of this article is to raise awareness of this dilemma, to direct the reader to existing work and to highlight current gaps that need solving.Comment: arXiv admin note: text overlap with arXiv:1709.0030
    corecore