346 research outputs found

    Cascaded Recurrent Neural Networks for Hyperspectral Image Classification

    Get PDF
    By considering the spectral signature as a sequence, recurrent neural networks (RNNs) have been successfully used to learn discriminative features from hyperspectral images (HSIs) recently. However, most of these models only input the whole spectral bands into RNNs directly, which may not fully explore the specific properties of HSIs. In this paper, we propose a cascaded RNN model using gated recurrent units (GRUs) to explore the redundant and complementary information of HSIs. It mainly consists of two RNN layers. The first RNN layer is used to eliminate redundant information between adjacent spectral bands, while the second RNN layer aims to learn the complementary information from non-adjacent spectral bands. To improve the discriminative ability of the learned features, we design two strategies for the proposed model. Besides, considering the rich spatial information contained in HSIs, we further extend the proposed model to its spectral-spatial counterpart by incorporating some convolutional layers. To test the effectiveness of our proposed models, we conduct experiments on two widely used HSIs. The experimental results show that our proposed models can achieve better results than the compared models

    Discovering and Generating Hard Examples for Training a Red Tide Detector

    Full text link
    Currently, accurate detection of natural phenomena, such as red tide, that adversely affect wildlife and human, using satellite images has been increasingly utilized. However, red tide detection on satellite images still remains a very hard task due to unpredictable nature of red tide occurrence, extreme sparsity of red tide samples, difficulties in accurate groundtruthing, etc. In this paper, we aim to tackle both the data sparsity and groundtruthing issues by primarily addressing two challenges: i) significant lack of hard examples of non-red tide that can enhance detection performance and ii) extreme data imbalance between red tide and non-red tide examples. In the proposed work, we devise a 9-layer fully convolutional network jointly optimized with two plug-in modules tailored to overcoming the two challenges: i) a hard negative example generator (HNG) to supplement the hard negative (non-red tide) examples and ii) cascaded online hard example mining (cOHEM) to ease the data imbalance. Our proposed network jointly trained with HNG and cOHEM provides state-of-the-art red tide detection accuracy on GOCI satellite images.Comment: 10 page

    Spectral feature fusion networks with dual attention for hyperspectral image classification

    Get PDF
    Recent progress in spectral classification is largely attributed to the use of convolutional neural networks (CNN). While a variety of successful architectures have been proposed, they all extract spectral features from various portions of adjacent spectral bands. In this paper, we take a different approach and develop a deep spectral feature fusion method, which extracts both local and interlocal spectral features, capturing thus also the correlations among non-adjacent bands. To our knowledge, this is the first reported deep spectral feature fusion method. Our model is a two-stream architecture, where an intergroup and a groupwise spectral classifiers operate in parallel. The interlocal spectral correlation feature extraction is achieved elegantly, by reshaping the input spectral vectors to form the socalled non-adjacent spectral matrices. We introduce the concept of groupwise band convolution to enable efficient extraction of discriminative local features with multiple kernels adopting to the local spectral content. Another important contribution of this work is a novel dual-channel attention mechanism to identify the most informative spectral features. The model is trained in an end-to-end fashion with a joint loss. Experimental results on real data sets demonstrate excellent performance compared to the current state-of-the-art

    Intelligent classification and data augmentation for high accuracy AI applications for quality assurance of mineral aggregates

    Get PDF
    In this work, a method for automatic analysis of natural aggregates using hyperspectral imaging and high-resolution RGB imaging combined with AI algorithms consisting of an intelligent deep-learning-based recognition routine in form of hybrid cascaded recognition routine, and a necessary demonstration setup are demonstrated. Mineral aggregates are an essential raw material for the production of concrete. Petrographic analysis represents an elementary quality assurance measure for the production of high-quality concrete. Petrography is still a manual examination by specially trained experts, and the difficulty of the task lies in a large intra-class variability combined with low inter-class variability. In order to be able to increase the recognition performance, innovative new classification approaches have to be developed. As a solution, this paper presents an innovative cascaded deep-learning-based classification and uses a deep-learning-based data augmentation method to synthetically generate images to optimize the results

    Spectral-spatial self-attention networks for hyperspectral image classification.

    Get PDF
    This study presents a spectral-spatial self-attention network (SSSAN) for classification of hyperspectral images (HSIs), which can adaptively integrate local features with long-range dependencies related to the pixel to be classified. Specifically, it has two subnetworks. The spatial subnetwork introduces the proposed spatial self-attention module to exploit rich patch-based contextual information related to the center pixel. The spectral subnetwork introduces the proposed spectral self-attention module to exploit the long-range spectral correlation over local spectral features. The extracted spectral and spatial features are then adaptively fused for HSI classification. Experiments conducted on four HSI datasets demonstrate that the proposed network outperforms several state-of-the-art methods

    Hyperspectral Image Analysis through Unsupervised Deep Learning

    Get PDF
    Hyperspectral image (HSI) analysis has become an active research area in computer vision field with a wide range of applications. However, in order to yield better recognition and analysis results, we need to address two challenging issues of HSI, i.e., the existence of mixed pixels and its significantly low spatial resolution (LR). In this dissertation, spectral unmixing (SU) and hyperspectral image super-resolution (HSI-SR) approaches are developed to address these two issues with advanced deep learning models in an unsupervised fashion. A specific application, anomaly detection, is also studied, to show the importance of SU.Although deep learning has achieved the state-of-the-art performance on supervised problems, its practice on unsupervised problems has not been fully developed. To address the problem of SU, an untied denoising autoencoder is proposed to decompose the HSI into endmembers and abundances with non-negative and abundance sum-to-one constraints. The denoising capacity is incorporated into the network with a sparsity constraint to boost the performance of endmember extraction and abundance estimation.Moreover, the first attempt is made to solve the problem of HSI-SR using an unsupervised encoder-decoder architecture by fusing the LR HSI with the high-resolution multispectral image (MSI). The architecture is composed of two encoder-decoder networks, coupled through a shared decoder, to preserve the rich spectral information from the HSI network. It encourages the representations from both modalities to follow a sparse Dirichlet distribution which naturally incorporates the two physical constraints of HSI and MSI. And the angular difference between representations are minimized to reduce the spectral distortion.Finally, a novel detection algorithm is proposed through spectral unmixing and dictionary based low-rank decomposition, where the dictionary is constructed with mean-shift clustering and the coefficients of the dictionary is encouraged to be low-rank. Experimental evaluations show significant improvement on the performance of anomaly detection conducted on the abundances (through SU).The effectiveness of the proposed approaches has been evaluated thoroughly by extensive experiments, to achieve the state-of-the-art results
    • …
    corecore