16,498 research outputs found

    Audio-visual multi-modality driven hybrid feature learning model for crowd analysis and classification

    Get PDF
    The high pace emergence in advanced software systems, low-cost hardware and decentralized cloud computing technologies have broadened the horizon for vision-based surveillance, monitoring and control. However, complex and inferior feature learning over visual artefacts or video streams, especially under extreme conditions confine majority of the at-hand vision-based crowd analysis and classification systems. Retrieving event-sensitive or crowd-type sensitive spatio-temporal features for the different crowd types under extreme conditions is a highly complex task. Consequently, it results in lower accuracy and hence low reliability that confines existing methods for real-time crowd analysis. Despite numerous efforts in vision-based approaches, the lack of acoustic cues often creates ambiguity in crowd classification. On the other hand, the strategic amalgamation of audio-visual features can enable accurate and reliable crowd analysis and classification. Considering it as motivation, in this research a novel audio-visual multi-modality driven hybrid feature learning model is developed for crowd analysis and classification. In this work, a hybrid feature extraction model was applied to extract deep spatio-temporal features by using Gray-Level Co-occurrence Metrics (GLCM) and AlexNet transferrable learning model. Once extracting the different GLCM features and AlexNet deep features, horizontal concatenation was done to fuse the different feature sets. Similarly, for acoustic feature extraction, the audio samples (from the input video) were processed for static (fixed size) sampling, pre-emphasis, block framing and Hann windowing, followed by acoustic feature extraction like GTCC, GTCC-Delta, GTCC-Delta-Delta, MFCC, Spectral Entropy, Spectral Flux, Spectral Slope and Harmonics to Noise Ratio (HNR). Finally, the extracted audio-visual features were fused to yield a composite multi-modal feature set, which is processed for classification using the random forest ensemble classifier. The multi-class classification yields a crowd-classification accurac12529y of (98.26%), precision (98.89%), sensitivity (94.82%), specificity (95.57%), and F-Measure of 98.84%. The robustness of the proposed multi-modality-based crowd analysis model confirms its suitability towards real-world crowd detection and classification tasks

    Machine learning in solar physics

    Full text link
    The application of machine learning in solar physics has the potential to greatly enhance our understanding of the complex processes that take place in the atmosphere of the Sun. By using techniques such as deep learning, we are now in the position to analyze large amounts of data from solar observations and identify patterns and trends that may not have been apparent using traditional methods. This can help us improve our understanding of explosive events like solar flares, which can have a strong effect on the Earth environment. Predicting hazardous events on Earth becomes crucial for our technological society. Machine learning can also improve our understanding of the inner workings of the sun itself by allowing us to go deeper into the data and to propose more complex models to explain them. Additionally, the use of machine learning can help to automate the analysis of solar data, reducing the need for manual labor and increasing the efficiency of research in this field.Comment: 100 pages, 13 figures, 286 references, accepted for publication as a Living Review in Solar Physics (LRSP

    Layer-wise Adaptive Step-Sizes for Stochastic First-Order Methods for Deep Learning

    Full text link
    We propose a new per-layer adaptive step-size procedure for stochastic first-order optimization methods for minimizing empirical loss functions in deep learning, eliminating the need for the user to tune the learning rate (LR). The proposed approach exploits the layer-wise stochastic curvature information contained in the diagonal blocks of the Hessian in deep neural networks (DNNs) to compute adaptive step-sizes (i.e., LRs) for each layer. The method has memory requirements that are comparable to those of first-order methods, while its per-iteration time complexity is only increased by an amount that is roughly equivalent to an additional gradient computation. Numerical experiments show that SGD with momentum and AdamW combined with the proposed per-layer step-sizes are able to choose effective LR schedules and outperform fine-tuned LR versions of these methods as well as popular first-order and second-order algorithms for training DNNs on Autoencoder, Convolutional Neural Network (CNN) and Graph Convolutional Network (GCN) models. Finally, it is proved that an idealized version of SGD with the layer-wise step sizes converges linearly when using full-batch gradients

    Network inference combining mutual information rate and statistical tests

    Get PDF
    In this paper, we present a method that combines information-theoretical and statistical approaches to infer connec- tivity in complex networks using time-series data. The method is based on estimations of the Mutual Information Rate for pairs of time-series and on statistical significance tests for connectivity acceptance using the false discovery rate method for multiple hypothesis testing. We provide the mathematical background on Mutual Information Rate, discuss the statistical significance tests and the false discovery rate. Further on, we present results for corre- lated normal-variates data, coupled circle and coupled logistic maps, coupled Lorenz systems and coupled stochastic Kuramoto phase oscillators. Following up, we study the effect of noise on the presented methodology in networks of coupled stochastic Kuramoto phase oscillators and of coupling heterogeneity degree on networks of coupled circle maps. We show that the method can infer the correct number and pairs of connected nodes, by means of receiver operating characteristic curves. In the more realistic case of stochastic data, we demonstrate its ability to infer the structure of the initial connectivity matrices. The method is also shown to recover the initial connectivity matrices for dynamics on the nodes of Erd ̋os-R ́enyi and small-world networks with varying coupling heterogeneity in their connections. The highlight of the proposed methodology is its ability to infer the underlying network connectivity based solely on the recorded datasets

    Scaling up integrated photonic reservoirs towards low-power high-bandwidth computing

    No full text

    A Finite Element-Inspired Hypergraph Neural Network: Application to Fluid Dynamics Simulations

    Full text link
    An emerging trend in deep learning research focuses on the applications of graph neural networks (GNNs) for mesh-based continuum mechanics simulations. Most of these learning frameworks operate on graphs wherein each edge connects two nodes. Inspired by the data connectivity in the finite element method, we present a method to construct a hypergraph by connecting the nodes by elements rather than edges. A hypergraph message-passing network is defined on such a node-element hypergraph that mimics the calculation process of local stiffness matrices. We term this method a finite element-inspired hypergraph neural network, in short FEIH(ϕ\phi)-GNN. We further equip the proposed network with rotation equivariance, and explore its capability for modeling unsteady fluid flow systems. The effectiveness of the network is demonstrated on two common benchmark problems, namely the fluid flow around a circular cylinder and airfoil configurations. Stabilized and accurate temporal roll-out predictions can be obtained using the ϕ\phi-GNN framework within the interpolation Reynolds number range. The network is also able to extrapolate moderately towards higher Reynolds number domain out of the training range

    A Decision Support System for Economic Viability and Environmental Impact Assessment of Vertical Farms

    Get PDF
    Vertical farming (VF) is the practice of growing crops or animals using the vertical dimension via multi-tier racks or vertically inclined surfaces. In this thesis, I focus on the emerging industry of plant-specific VF. Vertical plant farming (VPF) is a promising and relatively novel practice that can be conducted in buildings with environmental control and artificial lighting. However, the nascent sector has experienced challenges in economic viability, standardisation, and environmental sustainability. Practitioners and academics call for a comprehensive financial analysis of VPF, but efforts are stifled by a lack of valid and available data. A review of economic estimation and horticultural software identifies a need for a decision support system (DSS) that facilitates risk-empowered business planning for vertical farmers. This thesis proposes an open-source DSS framework to evaluate business sustainability through financial risk and environmental impact assessments. Data from the literature, alongside lessons learned from industry practitioners, would be centralised in the proposed DSS using imprecise data techniques. These techniques have been applied in engineering but are seldom used in financial forecasting. This could benefit complex sectors which only have scarce data to predict business viability. To begin the execution of the DSS framework, VPF practitioners were interviewed using a mixed-methods approach. Learnings from over 19 shuttered and operational VPF projects provide insights into the barriers inhibiting scalability and identifying risks to form a risk taxonomy. Labour was the most commonly reported top challenge. Therefore, research was conducted to explore lean principles to improve productivity. A probabilistic model representing a spectrum of variables and their associated uncertainty was built according to the DSS framework to evaluate the financial risk for VF projects. This enabled flexible computation without precise production or financial data to improve economic estimation accuracy. The model assessed two VPF cases (one in the UK and another in Japan), demonstrating the first risk and uncertainty quantification of VPF business models in the literature. The results highlighted measures to improve economic viability and the viability of the UK and Japan case. The environmental impact assessment model was developed, allowing VPF operators to evaluate their carbon footprint compared to traditional agriculture using life-cycle assessment. I explore strategies for net-zero carbon production through sensitivity analysis. Renewable energies, especially solar, geothermal, and tidal power, show promise for reducing the carbon emissions of indoor VPF. Results show that renewably-powered VPF can reduce carbon emissions compared to field-based agriculture when considering the land-use change. The drivers for DSS adoption have been researched, showing a pathway of compliance and design thinking to overcome the ‘problem of implementation’ and enable commercialisation. Further work is suggested to standardise VF equipment, collect benchmarking data, and characterise risks. This work will reduce risk and uncertainty and accelerate the sector’s emergence

    Proceedings of FORM 2022. Construction The Formation of Living Environment

    Get PDF
    This study examines the integration of building information modelling (BIM) technologies in operation & maintenance stage in the system of managing real estate that helps to reduce transaction costs. The approach and method are based on Digital Twin technology and Model Based System Engineering (MBSE) approach. The results of the development of a service for digital facility management and digital expertise are presented. The connection between physical and digital objects is conceptualized

    A novel graph-based method for clustering human activities

    Get PDF

    Identification of patterns for space-time event networks

    Get PDF
    This paper provides new tools for analyzing spatio-temporal event networks. We build time series of directed event networks for a set of spatial distances, and based on scan-statistics, the spatial distance that generates the strongest change of event network connections is chosen. In addition, we propose an empirical random network event generator to detect significant motifs throughout time. This generator preserves the spatial configuration but randomizes the order of the occurrence of events. To prevent the large number of links from masking the count of motifs, we propose using standardized counts of motifs at each time slot. Our methodology is able to detect interaction radius in space, build time series of networks, and describe changes in its topology over time, by means of identification of different types of motifs that allows for the understanding of the spatio-temporal dynamics of the phenomena. We illustrate our methodology by analyzing thefts occurred in Medellín (Colombia) between the years 2003 and 2015.Work supported by Red de Violencia y Criminalidad - Universidad Nacional Abierta y a Distancia UNAD, Bogotá Colombia and Universidad Nacional de Colombia sede Bogotá
    corecore