62 research outputs found

    Quad Meshing

    Get PDF
    Triangle meshes have been nearly ubiquitous in computer graphics, and a large body of data structures and geometry processing algorithms based on them has been developed in the literature. At the same time, quadrilateral meshes, especially semi-regular ones, have advantages for many applications, and significant progress was made in quadrilateral mesh generation and processing during the last several years. In this State of the Art Report, we discuss the advantages and problems of techniques operating on quadrilateral meshes, including surface analysis and mesh quality, simplification, adaptive refinement, alignment with features, parametrization, and remeshing

    Global parametrization of range image sets

    Get PDF
    We present a method to globally parameterize a surface represented by height maps over a set of planes (range images). In contrast to other parametrization techniques, we do not start with a manifold mesh. The parametrization we compute defines a manifold structure, it is seamless and globally smooth, can be aligned to geometric features and shows good quality in terms of angle and area preservation, comparable to current parametrization techniques for meshes. Computing such global seamless parametrization makes it possible to perform quad remeshing, texture mapping and texture synthesis and many other types of geometry processing operations. Our approach is based on a formulation of the Poisson equation on a manifold structure defined for the surface by the range images. Construction of such global parametrization requires only a way to project surface data onto a set of planes, and can be applied directly to implicit surfaces, nonmanifold surfaces, very large meshes, and collections of range scans. We demonstrate application of our technique to all these geometry types

    Mixed-integer quadrangulation

    Full text link

    Structuring Free-Form Building Envelopes

    Get PDF

    Simple quad domains for field aligned mesh parametrization

    Get PDF
    We present a method for the global parametrization of meshes that preserves alignment to a cross field in input while obtaining a parametric domain made of few coarse axis-aligned rectangular patches, which form an abstract base complex without T-junctions. The method is based on the topological simplification of the cross field in input, followed by global smoothing

    Conversion of trimmed NURBS surfaces to Catmull-Clark subdivision surfaces

    Get PDF
    This paper introduces a novel method to convert trimmed NURBS surfaces to untrimmed subdivision surfaces with Bézier edge conditions. We take a NURBS surface and its trimming curves as input, from this we automatically compute a base mesh, the limit surface of which fits the trimmed NURBS surface to a specified tolerance. We first construct the topology of the base mesh by performing a cross-field based decomposition in parameter space. The number and positions of extraordinary vertices required to represent the trimmed shape can be automatically identified by smoothing a cross field bounded by the parametric trimming curves. After the topology construction, the control point positions in the base mesh are calculated based on the limit stencils of the subdivision scheme and constraints to achieve tangential continuity across the boundary. Our method provides the user with either an editable base mesh or a fine mesh whose limit surface approximates the input within a certain tolerance. By integrating the trimming curve as part of the desired limit surface boundary, our conversion can produce gap-free models. Moreover, since we use tangential continuity across the boundary between adjacent surfaces as constraints, the converted surfaces join with G1 continuity. © 2014 The Authors.EPSRC, Chinese Government (PhD studentship) and Cambridge Trust

    Generating patterns on clothing for seamless design

    Get PDF
    Symmetric patterns are used widely in clothing manufacture. However, the discontinuity of patterns at seams can disrupt the visual appeal of clothing. While it is possible to align patterns to conceal such pattern breaks, it is hard create a completely seamless garment in terms of pattern continuity. In this thesis, we explore computational methods to parameterize the clothing pieces relative to a pattern’s coordinate system to achieve pattern continuity over garments. We review previous work related to pattern alignment on clothing. We also review surface quadrangulation methods. With a suitable quadrangulation, we can map any planar pattern with fourfold rotations into each quad, and achieve a seamless design. With an understanding of previous work, we approached the problems from three angles. First, we mapped patterns with sixfold rotations onto clothing by triangulating the clothing pieces and ensuring consistency of triangle vertices on both sides of a seam. We also mapped patterns with fourfold rotations onto clothing by optimizing the shape of each clothing piece in the texture domain. Lastly, we performed quadrangulation guided by cross fields, and mapped fourfold pattern units into each quad. We assembled and simulated the texture mapped clothing in Blender to visualize the results

    Practical quad mesh simplification

    Get PDF
    In this paper we present an innovative approach to incremental quad mesh simplification, i.e. the task of producing a low complexity quad mesh starting from a high complexity one. The process is based on a novel set of strictly local operations which preserve quad structure. We show how good tessellation quality (e.g. in terms of vertex valencies) can be achieved by pursuing uniform length and canonical proportions of edges and diagonals. The decimation process is interleaved with smoothing in tangent space. The latter strongly contributes to identify a suitable sequence of local modification operations. The method is naturally extended to manage preservation of feature lines (e.g. creases) and varying (e.g. adaptive) tessellation densities. We also present an original Triangle-to-Quad conversion algorithm that behaves well in terms of geometrical complexity and tessellation quality, which we use to obtain the initial quad mesh from a given triangle mesh
    • …
    corecore