15,616 research outputs found

    Mode fluctuations as fingerprint of chaotic and non-chaotic systems

    Full text link
    The mode-fluctuation distribution P(W)P(W) is studied for chaotic as well as for non-chaotic quantum billiards. This statistic is discussed in the broader framework of the E(k,L)E(k,L) functions being the probability of finding kk energy levels in a randomly chosen interval of length LL, and the distribution of n(L)n(L), where n(L)n(L) is the number of levels in such an interval, and their cumulants ck(L)c_k(L). It is demonstrated that the cumulants provide a possible measure for the distinction between chaotic and non-chaotic systems. The vanishing of the normalized cumulants CkC_k, k≥3k\geq 3, implies a Gaussian behaviour of P(W)P(W), which is realized in the case of chaotic systems, whereas non-chaotic systems display non-vanishing values for these cumulants leading to a non-Gaussian behaviour of P(W)P(W). For some integrable systems there exist rigorous proofs of the non-Gaussian behaviour which are also discussed. Our numerical results and the rigorous results for integrable systems suggest that a clear fingerprint of chaotic systems is provided by a Gaussian distribution of the mode-fluctuation distribution P(W)P(W).Comment: 44 pages, Postscript. The figures are included in low resolution only. A full version is available at http://www.physik.uni-ulm.de/theo/qc/baecker.htm

    Moments of Wishart-Laguerre and Jacobi ensembles of random matrices: application to the quantum transport problem in chaotic cavities

    Full text link
    We collect explicit and user-friendly expressions for one-point densities of the real eigenvalues {λi}\{\lambda_i\} of N×NN\times N Wishart-Laguerre and Jacobi random matrices with orthogonal, unitary and symplectic symmetry. Using these formulae, we compute integer moments τn=\tau_n= for all symmetry classes without any large NN approximation. In particular, our results provide exact expressions for moments of transmission eigenvalues in chaotic cavities with time-reversal or spin-flip symmetry and supporting a finite and arbitrary number of electronic channels in the two incoming leads.Comment: 27 pages, 3 figures. Typos fixed, references adde

    Periodic orbit theory of strongly anomalous transport

    Full text link
    We establish a deterministic technique to investigate transport moments of arbitrary order. The theory is applied to the analysis of different kinds of intermittent one-dimensional maps and the Lorentz gas with infinite horizon: the typical appearance of phase transitions in the spectrum of transport exponents is explained.Comment: 22 pages, 10 figures, revised versio

    Thermodynamics of small Fermi systems: quantum statistical fluctuations

    Full text link
    We investigate the probability distribution of the quantum fluctuations of thermodynamic functions of finite, ballistic, phase-coherent Fermi gases. Depending on the chaotic or integrable nature of the underlying classical dynamics, on the thermodynamic function considered, and on temperature, we find that the probability distributions are dominated either (i) by the local fluctuations of the single-particle spectrum on the scale of the mean level spacing, or (ii) by the long-range modulations of that spectrum produced by the short periodic orbits. In case (i) the probability distributions are computed using the appropriate local universality class, uncorrelated levels for integrable systems and random matrix theory for chaotic ones. In case (ii) all the moments of the distributions can be explicitly computed in terms of periodic orbit theory, and are system-dependent, non-universal, functions. The dependence on temperature and number of particles of the fluctuations is explicitly computed in all cases, and the different relevant energy scales are displayed.Comment: 24 pages, 7 figures, 5 table

    Frequency and Phase Synchronization in Neuromagnetic Cortical Responses to Flickering-Color Stimuli

    Full text link
    In our earlier study dealing with the analysis of neuromagnetic responses (magnetoencephalograms - MEG) to flickering-color stimuli for a group of control human subjects (9 volunteers) and a patient with photosensitive epilepsy (a 12-year old girl), it was shown that Flicker-Noise Spectroscopy (FNS) was able to identify specific differences in the responses of each organism. The high specificity of individual MEG responses manifested itself in the values of FNS parameters for both chaotic and resonant components of the original signal. The present study applies the FNS cross-correlation function to the analysis of correlations between the MEG responses simultaneously measured at spatially separated points of the human cortex processing the red-blue flickering color stimulus. It is shown that the cross-correlations for control (healthy) subjects are characterized by frequency and phase synchronization at different points of the cortex, with the dynamics of neuromagnetic responses being determined by the low-frequency processes that correspond to normal physiological rhythms. But for the patient, the frequency and phase synchronization breaks down, which is associated with the suppression of cortical regulatory functions when the flickering-color stimulus is applied, and higher frequencies start playing the dominating role. This suggests that the disruption of correlations in the MEG responses is the indicator of pathological changes leading to photosensitive epilepsy, which can be used for developing a method of diagnosing the disease based on the analysis with the FNS cross-correlation function.Comment: 21 pages, 14 figures; submitted to "Laser Physics", 2010, 2

    Semiclassical Trace Formulae and Eigenvalue Statistics in Quantum Chaos

    Full text link
    A detailed discussion of semiclassical trace formulae is presented and it is demonstrated how a regularized trace formula can be derived while dealing only with finite and convergent expressions. Furthermore, several applications of trace formula techniques to quantum chaos are reviewed. Then local spectral statistics, measuring correlations among finitely many eigenvalues, are reviewed and a detailed semiclassical analysis of the number variance is given. Thereafter the transition to global spectral statistics, taking correlations among infinitely many quantum energies into account, is discussed. It is emphasized that the resulting limit distributions depend on the way one passes to the global scale. A conjecture on the distribution of the fluctuations of the spectral staircase is explained in this general context and evidence supporting the conjecture is discussed.Comment: 48 pages, LaTeX, uses amssym
    • …
    corecore