102 research outputs found

    Spectral Unmixing with Multiple Dictionaries

    Full text link
    Spectral unmixing aims at recovering the spectral signatures of materials, called endmembers, mixed in a hyperspectral or multispectral image, along with their abundances. A typical assumption is that the image contains one pure pixel per endmember, in which case spectral unmixing reduces to identifying these pixels. Many fully automated methods have been proposed in recent years, but little work has been done to allow users to select areas where pure pixels are present manually or using a segmentation algorithm. Additionally, in a non-blind approach, several spectral libraries may be available rather than a single one, with a fixed number (or an upper or lower bound) of endmembers to chose from each. In this paper, we propose a multiple-dictionary constrained low-rank matrix approximation model that address these two problems. We propose an algorithm to compute this model, dubbed M2PALS, and its performance is discussed on both synthetic and real hyperspectral images

    Image Processing and Machine Learning for Hyperspectral Unmixing: An Overview and the HySUPP Python Package

    Full text link
    Spectral pixels are often a mixture of the pure spectra of the materials, called endmembers, due to the low spatial resolution of hyperspectral sensors, double scattering, and intimate mixtures of materials in the scenes. Unmixing estimates the fractional abundances of the endmembers within the pixel. Depending on the prior knowledge of endmembers, linear unmixing can be divided into three main groups: supervised, semi-supervised, and unsupervised (blind) linear unmixing. Advances in Image processing and machine learning substantially affected unmixing. This paper provides an overview of advanced and conventional unmixing approaches. Additionally, we draw a critical comparison between advanced and conventional techniques from the three categories. We compare the performance of the unmixing techniques on three simulated and two real datasets. The experimental results reveal the advantages of different unmixing categories for different unmixing scenarios. Moreover, we provide an open-source Python-based package available at https://github.com/BehnoodRasti/HySUPP to reproduce the results

    Regularization approaches to hyperspectral unmixing

    Get PDF
    We consider a few different approaches to hyperspectral unmixing of remotely sensed imagery which exploit and extend recent advances in sparse statistical regularization, handling of constraints and dictionary reduction. Hyperspectral unmixing methods often use a conventional least-squares based lasso which assumes that the data follows the Gaussian distribution, we use this as a starting point. In addition, we consider a robust approach to sparse spectral unmixing of remotely sensed imagery which reduces the sensitivity of the estimator to outliers. Due to water absorption and atmospheric effects that affect data collection, hyperspectral images are prone to have large outliers. The framework comprises of several well-principled penalties. A non-convex, hyper-Laplacian prior is incorporated to induce sparsity in the number of active pure spectral components, and total variation regularizer is included to exploit the spatial-contextual information of hyperspectral images. Enforcing the sum-to-one and non-negativity constraint on the models parameters is essential for obtaining realistic estimates. We consider two approaches to account for this: an iterative heuristic renormalization and projection onto the positive orthant, and a reparametrization of the coefficients which gives rise to a theoretically founded method. Since the large size of modern spectral libraries cannot only present computational challenges but also introduce collinearities between regressors, we introduce a library reduction step. This uses the multiple signal classi fication (MUSIC) array processing algorithm, which both speeds up unmixing and yields superior results in scenarios where the library size is extensive. We show that although these problems are non-convex, they can be solved by a properly de fined algorithm based on either trust region optimization or iteratively reweighted least squares. The performance of the different approaches is validated in several simulated and real hyperspectral data experiments

    Hyperspectral Image Segmentation Using a New Spectral Unmixing-Based Binary Partition Tree Representation

    No full text
    International audienceThe Binary Partition Tree (BPT) is a hierarchical region-based representation of an image in a tree structure. BPT allows users to explore the image at different segmentation scales. Often, the tree is pruned to get a more compact representation and so the remaining nodes conform an optimal partition for some given task. Here, we propose a novel BPT construction approach and pruning strategy for hyperspectral images based on spectral unmixing concepts. Linear Spectral Unmixing (LSU) consists of finding the spectral signatures of the materials present in the image (endmembers) and their fractional abundances within each pixel. The proposed methodology exploits the local unmixing of the regions to find the partition achieving a global minimum reconstruction error. Results are presented on real hyperspectral data sets with different contexts and resolutions

    Dynamical spectral unmixing of multitemporal hyperspectral images

    Full text link
    In this paper, we consider the problem of unmixing a time series of hyperspectral images. We propose a dynamical model based on linear mixing processes at each time instant. The spectral signatures and fractional abundances of the pure materials in the scene are seen as latent variables, and assumed to follow a general dynamical structure. Based on a simplified version of this model, we derive an efficient spectral unmixing algorithm to estimate the latent variables by performing alternating minimizations. The performance of the proposed approach is demonstrated on synthetic and real multitemporal hyperspectral images.Comment: 13 pages, 10 figure

    Reproducing Kernel Hilbert Space Pruning for Sparse Hyperspectral Abundance Prediction

    Full text link
    Hyperspectral measurements from long range sensors can give a detailed picture of the items, materials, and chemicals in a scene but analysis can be difficult, slow, and expensive due to high spatial and spectral resolutions of state-of-the-art sensors. As such, sparsity is important to enable the future of spectral compression and analytics. It has been observed that environmental and atmospheric effects, including scattering, can produce nonlinear effects posing challenges for existing source separation and compression methods. We present a novel transformation into Hilbert spaces for pruning and constructing sparse representations via non-negative least squares minimization. Then we introduce max likelihood compression vectors to decrease information loss. Our approach is benchmarked against standard pruning and least squares as well as deep learning methods. Our methods are evaluated in terms of overall spectral reconstruction error and compression rate using real and synthetic data. We find that pruning least squares methods converge quickly unlike matching pursuit methods. We find that Hilbert space pruning can reduce error by as much as 40% of the error of standard pruning and also outperform neural network autoencoders

    Hyperspectral super-resolution of locally low rank images from complementary multisource data

    Get PDF
    International audienceRemote sensing hyperspectral images (HSI) are quite often low rank, in the sense that the data belong to a low dimensional subspace/manifold. This has been recently exploited for the fusion of low spatial resolution HSI with high spatial resolution multispectral images (MSI) in order to obtain super-resolution HSI. Most approaches adopt an unmixing or a matrix factorization perspective. The derived methods have led to state-of-the-art results when the spectral information lies in a low dimensional subspace/manifold. However, if the subspace/manifold dimensionality spanned by the complete data set is large, i.e., larger than the number of multispectral bands, the performance of these methods decrease mainly because the underlying sparse regression problem is severely ill-posed. In this paper, we propose a local approach to cope with this difficulty. Fundamentally, we exploit the fact that real world HSI are locally low rank, that is, pixels acquired from a given spatial neighborhood span a very low dimensional subspace/manifold, i.e., lower or equal than the number of multispectral bands. Thus, we propose to partition the image into patches and solve the data fusion problem independently for each patch. This way, in each patch the subspace/manifold dimensionality is low enough such that the problem is not ill-posed anymore. We propose two alternative approaches to define the hyperspectral super-resolution via local dictionary learning using endmember induction algorithms (HSR-LDL-EIA). We also explore two alternatives to define the local regions, using sliding windows and binary partition trees. The effectiveness of the proposed approaches is illustrated with synthetic and semi real data

    A comparison study between windowing and binary partition trees for hyperspectral image information mining

    No full text
    International audienceRemote sensors capture large scenes that are conventionally split in smaller patches before being stored and analyzed. Traditionally, this has been done by dividing the scene in rectangular windows. Such windowing methodology could provoke the separation of spectrally homogeneous areas or objects of interest into two or more patches. This is due to the presence of objects of interest in correspondence to windows' borders, or because the fixed size of the windows does not adapt well to the scale of the objects. To alleviate this issue, the windows can be arranged in an overlapping way, incurring in some data redundancy storage. Recently, tree representations have been used as an alternative to windowing in order to structure and store large amounts of remote sensing data. In this work we explore the benefits of using Binary Partition Trees (BPT) instead of windowing to store hyperspectral large scenes. We are particularly interested in storing the information resulting of local spectral unmixing processes running over a large real hyperspectral scene. We show that under similar conditions BPT allows a better storage of the unmixing information in terms of reconstruction error
    corecore