98 research outputs found

    Millimetre wave frequency band as a candidate spectrum for 5G network architecture : a survey

    Get PDF
    In order to meet the huge growth in global mobile data traffic in 2020 and beyond, the development of the 5th Generation (5G) system is required as the current 4G system is expected to fall short of the provision needed for such growth. 5G is anticipated to use a higher carrier frequency in the millimetre wave (mm-wave) band, within the 20 to 90 GHz, due to the availability of a vast amount of unexploited bandwidth. It is a revolutionary step to use these bands because of their different propagation characteristics, severe atmospheric attenuation, and hardware constraints. In this paper, we carry out a survey of 5G research contributions and proposed design architectures based on mm-wave communications. We present and discuss the use of mm-wave as indoor and outdoor mobile access, as a wireless backhaul solution, and as a key enabler for higher order sectorisation. Wireless standards such as IEE802.11ad, which are operating in mm-wave band have been presented. These standards have been designed for short range, ultra high data throughput systems in the 60 GHz band. Furthermore, this survey provides new insights regarding relevant and open issues in adopting mm-wave for 5G networks. This includes increased handoff rate and interference in Ultra-Dense Network (UDN), waveform consideration with higher spectral efficiency, and supporting spatial multiplexing in mm-wave line of sight. This survey also introduces a distributed base station architecture in mm-wave as an approach to address increased handoff rate in UDN, and to provide an alternative way for network densification in a time and cost effective manner

    Efficient radio resource management for future generation heterogeneous wireless networks

    Get PDF
    The heterogeneous deployment of small cells (e.g., femtocells) in the coverage area of the traditional macrocells is a cost-efficient solution to provide network capacity, indoor coverage and green communications towards sustainable environments in the future fifth generation (5G) wireless networks. However, the unplanned and ultra-dense deployment of femtocells with their uncoordinated operations will result in technical challenges such as severe interference, a significant increase in total energy consumption, unfairness in radio resource sharing and inadequate quality of service provisioning. Therefore, there is a need to develop efficient radio resource management algorithms that will address the above-mentioned technical challenges. The aim of this thesis is to develop and evaluate new efficient radio resource management algorithms that will be implemented in cognitive radio enabled femtocells to guarantee the economical sustainability of broadband wireless communications and users' quality of service in terms of throughput and fairness. Cognitive Radio (CR) technology with the Dynamic Spectrum Access (DSA) and stochastic process are the key technologies utilized in this research to increase the spectrum efficiency and energy efficiency at limited interference. This thesis essentially investigates three research issues relating to the efficient radio resource management: Firstly, a self-organizing radio resource management algorithm for radio resource allocation and interference management is proposed. The algorithm considers the effect of imperfect spectrum sensing in detecting the available transmission opportunities to maximize the throughput of femtocell users while keeping interference below pre-determined thresholds and ensuring fairness in radio resource sharing among users. Secondly, the effect of maximizing the energy efficiency and the spectrum efficiency individually on radio resource management is investigated. Then, an energy-efficient radio resource management algorithm and a spectrum-efficient radio resource management algorithm are proposed for green communication, to improve the probabilities of spectrum access and further increase the network capacity for sustainable environments. Also, a joint maximization of the energy efficiency and spectrum efficiency of the overall networks is considered since joint optimization of energy efficiency and spectrum efficiency is one of the goals of 5G wireless networks. Unfortunately, maximizing the energy efficiency results in low performance of the spectrum efficiency and vice versa. Therefore, there is an investigation on how to balance the trade-off that arises when maximizing both the energy efficiency and the spectrum efficiency simultaneously. Hence, a joint energy efficiency and spectrum efficiency trade-off algorithm is proposed for radio resource allocation in ultra-dense heterogeneous networks based on orthogonal frequency division multiple access. Lastly, a joint radio resource allocation with adaptive modulation and coding scheme is proposed to minimize the total transmit power across femtocells by considering the location and the service requirements of each user in the network. The performance of the proposed algorithms is evaluated by simulation and numerical analysis to demonstrate the impact of ultra-dense deployment of femtocells on the macrocell networks. The results show that the proposed algorithms offer improved performance in terms of throughput, fairness, power control, spectrum efficiency and energy efficiency. Also, the proposed algorithms display excellent performance in dynamic wireless environments

    Improvement of 5G performance through network densification in millimetre wave band

    Get PDF
    Recently, there has been a substantial growth in mobile data traffic due to the widespread of data hungry devices such as mobiles and laptops. The anticipated high traffic demands and low latency requirements stemmed from the Internet of Things (IoT) and Machine Type Communications (MTC) can only be met with radical changes to the network paradigm such as harnessing the millimetre wave (mmWave) band in Ultra-Dense Network (UDN). This thesis presents many challenges, problems and questions that arise in research and design stage of 5G network. The main challenges of 5G in mmWave can be characterised with the following attributes: i- huge traffic demands, with very high data rate requirements, ii- high interference in UDN, iii increased handover in UDN, higher dependency on Line of Sight (LOS) coverage and high shadow fading, and iv-massive MTC traffic due to billions of connected devices. In this work, software simulation tools have been used to evaluate the proposed solutions. Therefore, we have introduced 5G network based on network densification. Network densification includes densification over frequency through mmWave, and densification over space through higher number of antennas, Higher Order Sectorisation (HOS), and denser deployment of small-cells. Our results show that the densification theme has significantly improved network capacity and user Quality of Experience (QoE). UDN network can efficiently raise the user experience to the level that 5G vision promised. However, one of the drawback of using UDN and HOS is the significant increase in Inter-Cell Interference (ICI). Therefore, ICI has been addressed in this work to increase the gain of densification. ICI can degrade the performance of wireless network, particularly in UDN due to the increased interference from surrounding cells. We have used Fractional Frequency Reuse (FFR) as ICI Coordination (ICIC) for UDN network and HOS environment. The work shows that FFR has improved the network performance in terms of cell-edge data throughput and average cell throughput, and maintain the peak data throughput at a certain threshold. Additionally, HOS has shown even greater gain over default sectored sites when the interference is carefully coordinated. To generalise the principle of densification, we have introduced Distributed Base Station (DBS) as the envisioned network architecture for 5G in mmWave. Remotely distributed antennas in DBS architecture have been harnessed in order to compensate for the high path loss that characterise mmWave propagation. The proposed architecture has significantly improved the user data throughput, decreased the unnecessary handovers as a result of dense network, increased the LOS coverage probability, and reduced the impact of shadow fading. Additionally, this research discusses the regulatory requirements at mmWave band for the Maximum Permissible Exposure (MPE). Finally, scheduling massive MTC traffic in 5G has been considered. MTC is expected to contribute to the majority of IoT traffic. In this context, an algorithm has been developed to schedule this type of traffic. The results demonstrate the gain of using distributed antennas on MTC traffic in terms of spectral efficiency, data throughput, and fairness. The results show considerable improvement in the performance metrics. The combination of these contributions has provided remarkable increase in data throughput to achieve the 5G vision of “massive” capacity and to support human and machine traffic

    Aspects of capacity enhancement techniques in cellular networks

    Get PDF
    Frequency spectrum is the scarce resource. From mobile operator’s point of view, efficient utilization of the radio resources is needed while providing maximum coverage, and ensuring good quality of service with minimal infrastructure. In high capacity demanding areas, multilayer networks with multiband and multi radio access technologies are deployed, in order to meet the capacity requirements. In his doctoral thesis, Usman Sheikh has proposed a “Smart Traffic Handling” strategy, which is based on user’s required service type and location. Smart traffic handling scheme efficiently utilizes the different layers of the network, balances the load among them, and improves the system capacity. Power resources at base station are also limited. Usman Sheikh’s proposed “Power Control Scheme for High Speed Downlink Packet Access (HSDPA) network” improves the cell edge user experience, while maintaining the fairness among the other users in a cell. With the help of a proposed power control scheme, a user far from the base station can also enjoy the better quality of service. Generally, mobile operators use macro cells with wide beam antennas for wider coverage in the cell, but future capacity demands cannot be achieved by using only them. “Higher Order Sectorization” is one possible way to increase the system capacity. Usman Sheikh proposed new network layouts called “Snowflake” and “Flower” tessellations, for 6-sector and 12-sector sites, respectively. These tessellations can be used as a basis for making a nominal network plan for sites with higher order sectorization. These tessellations would be helpful for simulation purposes. Through his work, he has also tried to highlight the importance of deploying “Adaptive MIMO Switching” in Long Term Evolution (LTE) system, the fourth generation of wireless networks. In future, the fifth generation of wireless networks is expected to offer thousand times more capacity compared to LTE. The novel concept of “Single Path Multiple Access (SPMA)” given by Usman Sheikh is a revolutionary idea, and gives a possibility to increase the system capacity by a giant margin. SPMA can be considered as a right step towards 5G technology. Usman Sheikh’s work is of high importance not only from mobile operator’s point of view; rather his contributions to the scientific community will also lead to better user (customer) experience. His work will definitely benefit the mankind in utilizing the limited resources in an optimum and efficient way

    Structured Non-Uniformly Spaced Rectangular Antenna Array Design for FD-MIMO Systems

    Full text link

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Cooperative Radio Communications for Green Smart Environments

    Get PDF
    The demand for mobile connectivity is continuously increasing, and by 2020 Mobile and Wireless Communications will serve not only very dense populations of mobile phones and nomadic computers, but also the expected multiplicity of devices and sensors located in machines, vehicles, health systems and city infrastructures. Future Mobile Networks are then faced with many new scenarios and use cases, which will load the networks with different data traffic patterns, in new or shared spectrum bands, creating new specific requirements. This book addresses both the techniques to model, analyse and optimise the radio links and transmission systems in such scenarios, together with the most advanced radio access, resource management and mobile networking technologies. This text summarises the work performed by more than 500 researchers from more than 120 institutions in Europe, America and Asia, from both academia and industries, within the framework of the COST IC1004 Action on "Cooperative Radio Communications for Green and Smart Environments". The book will have appeal to graduates and researchers in the Radio Communications area, and also to engineers working in the Wireless industry. Topics discussed in this book include: • Radio waves propagation phenomena in diverse urban, indoor, vehicular and body environments• Measurements, characterization, and modelling of radio channels beyond 4G networks• Key issues in Vehicle (V2X) communication• Wireless Body Area Networks, including specific Radio Channel Models for WBANs• Energy efficiency and resource management enhancements in Radio Access Networks• Definitions and models for the virtualised and cloud RAN architectures• Advances on feasible indoor localization and tracking techniques• Recent findings and innovations in antenna systems for communications• Physical Layer Network Coding for next generation wireless systems• Methods and techniques for MIMO Over the Air (OTA) testin

    Dense Small Cell Networks for Next Generation Wireless Systems

    Get PDF
    • …
    corecore