54 research outputs found

    Edge reconstruction of the Ihara zeta function

    Get PDF
    We show that if a graph GG has average degree dˉ4\bar d \geq 4, then the Ihara zeta function of GG is edge-reconstructible. We prove some general spectral properties of the edge adjacency operator TT: it is symmetric for an indefinite form and has a "large" semi-simple part (but it can fail to be semi-simple in general). We prove that this implies that if dˉ>4\bar d>4, one can reconstruct the number of non-backtracking (closed or not) walks through a given edge, the Perron-Frobenius eigenvector of TT (modulo a natural symmetry), as well as the closed walks that pass through a given edge in both directions at least once. The appendix by Daniel MacDonald established the analogue for multigraphs of some basic results in reconstruction theory of simple graphs that are used in the main text.Comment: 19 pages, 2 pictures, in version 2 some minor changes and now including an appendix by Daniel McDonal

    Open Systems Viewed Through Their Conservative Extensions

    Full text link
    A typical linear open system is often defined as a component of a larger conservative one. For instance, a dielectric medium, defined by its frequency dependent electric permittivity and magnetic permeability is a part of a conservative system which includes the matter with all its atomic complexity. A finite slab of a lattice array of coupled oscillators modelling a solid is another example. Assuming that such an open system is all one wants to observe, we ask how big a part of the original conservative system (possibly very complex) is relevant to the observations, or, in other words, how big a part of it is coupled to the open system? We study here the structure of the system coupling and its coupled and decoupled components, showing, in particular, that it is only the system's unique minimal extension that is relevant to its dynamics, and this extension often is tiny part of the original conservative system. We also give a scenario explaining why certain degrees of freedom of a solid do not contribute to its specific heat.Comment: 51 page

    Lossless Representation of Graphs using Distributions

    Full text link
    We consider complete graphs with edge weights and/or node weights taking values in some set. In the first part of this paper, we show that a large number of graphs are completely determined, up to isomorphism, by the distribution of their sub-triangles. In the second part, we propose graph representations in terms of one-dimensional distributions (e.g., distribution of the node weights, sum of adjacent weights, etc.). For the case when the weights of the graph are real-valued vectors, we show that all graphs, except for a set of measure zero, are uniquely determined, up to isomorphism, from these distributions. The motivating application for this paper is the problem of browsing through large sets of graphs.Comment: 19 page

    Controllable graphs with least eigenvalue at least -2

    Get PDF
    Connected graphs whose eigenvalues are distinct and main are called controllable graphs in view of certain applications in control theory. We give some general characterizations of the controllable graphs whose least eigenvalue is bounded from below by - 2; in particular, we determine all the controllable exceptional graphs. We also investigate the controllable graphs whose second largest eigenvalue does not exceed 1
    corecore