4,216 research outputs found

    Slow waves in locally resonant metamaterials line defect waveguides

    Get PDF
    In the past decades, many efforts have been devoted to the temporal manipulation of waves, especially focusing on slowing down their propagation. In electromagnetism, from microwave to optics, as well as in acoustics or for elastic waves, slow wave propagation indeed largely benefits both applied and fundamental physics. It is for instance essential in analog signal computing through the design of components such as delay lines and buffers, and it is one of the prerequisite for increased wave/matter interactions. Despite the interest of a broad community, researches have mostly been conducted in optics along with the development of wavelength scaled structured composite media, that appear promising candidates for compact slow light components. Yet their minimum structural scale prevents them from being transposed to lower frequencies where wavelengths range from sub-millimeter to meters. In this article, we propose to overcome this limitation thanks to the deep sub-wavelength scale of locally resonant metamaterials. In our approach, implemented here in the microwave regime, we show that introducing coupled resonant defects in such composite media allows the creation of deep sub-wavelength waveguides. We experimentally demonstrate that waves, while propagating in such waveguides, exhibit largely reduced group velocities. We qualitatively explain the mechanism underlying this slow wave propagation and first experimentally demonstrate, then numerically verify, how it can be taken advantage of to tune the velocity, achieving group indices ng as high as 227 over relatively large bandwidths. We conclude by highlighting the three beneficial consequences of our line defect slow wave waveguides in locally resonant metamaterials: the deep sub-wavelength scale, the very large group indices and the fact that slow wave propagation does not occur at the expense of drastic bandwidth reductions

    Hybrid integration methods for on-chip quantum photonics

    Get PDF
    The goal of integrated quantum photonics is to combine components for the generation, manipulation, and detection of nonclassical light in a phase-stable and efficient platform. Solid-state quantum emitters have recently reached outstanding performance as single-photon sources. In parallel, photonic integrated circuits have been advanced to the point that thousands of components can be controlled on a chip with high efficiency and phase stability. Consequently, researchers are now beginning to combine these leading quantum emitters and photonic integrated circuit platforms to realize the best properties of each technology. In this paper, we review recent advances in integrated quantum photonics based on such hybrid systems. Although hybrid integration solves many limitations of individual platforms, it also introduces new challenges that arise from interfacing different materials. We review various issues in solid-state quantum emitters and photonic integrated circuits, the hybrid integration techniques that bridge these two systems, and methods for chip-based manipulation of photons and emitters. Finally, we discuss the remaining challenges and future prospects of on-chip quantum photonics with integrated quantum emitters. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreemen

    Polymer Microring Coupled-Resonator Optical Waveguides

    Get PDF
    We present measurements of the transmission and dispersion properties of coupled-resonator optical waveguides (CROWs) consisting of weakly coupled polymer microring resonators. The fabrication and the measurement methods of the CROWs are discussed as well. The experimental results agree well with the theoretical loss, waveguide dispersion, group delay, group velocity, and group-velocity dispersion (GVD). The intrinsic quality factors of the microrings were about 1.5 times 10^4 to 1.8 times 10^4, and group delays greater than 100 ps were measured with a GVD between -70 and 100 ps/(nm x resonator). With clear and simple spectral responses and without a need for the tuning of the resonators, the polymer microring CROWs demonstrate the practicability of using a large number of microresonators to control the propagation of optical waves

    Nonlinear optics and light localization in periodic photonic lattices

    Full text link
    We review the recent developments in the field of photonic lattices emphasizing their unique properties for controlling linear and nonlinear propagation of light. We draw some important links between optical lattices and photonic crystals pointing towards practical applications in optical communications and computing, beam shaping, and bio-sensing.Comment: to appear in Journal of Nonlinear Optical Physics & Materials (JNOPM

    Design of photonic crystal optical waveguides with single-mode propagation in the photonic bandgap

    Get PDF
    The authors present a systematic method for designing dielectric-core photonic crystal optical waveguides that support only one mode in the photonic bandgap (PBG). It is shown that by changing the sizes of thc air columns (without perturbing the positions of the centres of the air column) in the two rows that are adjacent to the middle slab, the higher order mode(s) can be pushed out of the photonic bandgap, resulting in single-mode wave propagation in the bandgap

    Designing coupled-resonator optical waveguide delay lines

    Get PDF
    We address the trade-offs among delay, loss, and bandwidth in the design of coupled-resonator optical waveguide (CROW) delay lines. We begin by showing the convergence of the transfer matrix, tight-binding, and time domain formalisms in the theoretical analysis of CROWs. From the analytical formalisms we obtain simple, analytical expressions for the achievable delay, loss, bandwidth, and a figure of merit to be used to compare delay line performance. We compare CROW delay lines composed of ring resonators, toroid resonators, Fabry-Perot resonators, and photonic crystal defect cavities based on recent experimental results reported in the literature

    The observation of photon echoes from evanescently coupled rare-earth ions in a planar waveguide

    Full text link
    We report the measurement of the inhomogeneous linewidth, homogeneous linewidth and spin state lifetime of Pr3+ ions in a novel waveguide architecture. The TeO2 slab waveguide deposited on a bulk Pr3+:Y2SiO5 crystal allows the 3H4 - 1D2 transition of Pr3+ ions to be probed by the optical evanescent field that extends into the substrate. The 2 GHz inhomogeneous linewidth, the optical coherence time of 70 +- 5 us, and the spin state lifetime of 9.8 +- 0.3 s indicate that the properties of ions interacting with the waveguide mode are consistent with those of bulk ions. This result establishes the foundation for large, integrated and high performance rare-earth-ion quantum systems based on a waveguide platform.Comment: 5 pages, 5 figure
    corecore